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Chapter 1
User’s Guide

1.1 Quickstart

ParMOO is a parallel multiobjective optimization solver that seeks to exploit simulation-based structure in objective
and constraint functions.

To exploit structure, ParMOO models simulations separately from objectives and constraints. In our language:

• a design variable is an input to the problem, which we can directly control;

• a simulation is an expensive or time-consuming process, including real-world experimentation, which is treated
as a blackbox function of the design variables and evaluated sparingly;

• an objective is an algebraic function of the design variables and/or simulation outputs, which we would like to
optimize; and

• a constraint is an algebraic function of the design variables and/or simulation outputs, which cannot exceed a
specified bound.

2
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To solve a multiobjective optimization problem (MOOP), we use surrogate models of the simulation outputs, together
with the algebraic definition of the objectives and constraints.

In order to achieve scalable parallelism, we use libEnsemble to distribute batches of simulation evaluations across
parallel resources.

1.1.1 Dependencies

ParMOO has been tested on Unix/Linux and MacOS systems.

ParMOO’s base has the following dependencies:

• Python 3.8+

• numpy – for data structures and performant numerical linear algebra

• scipy – for scientific calculations needed for specific modules

• pyDOE – for generating experimental designs

• pandas – for exporting the resulting databases

Additional dependencies are needed to use the additional features in parmoo.extras:

• libEnsemble – for managing parallel simulation evaluations

And for using the Pareto front visualization library in parmoo.viz:

• plotly – for generating interactive plots

• dash – for hosting interactive plots in your browser

• kaleido – for exporting static plots post-interaction

1.1.2 Installation

The easiest way to install ParMOO is via the Python package index, PyPI (commonly called pip):

pip install < --user > parmoo

where the braces around < --user > indicate that the --user flag is optional.

To install all dependencies (including libEnsemble) use:

pip install < --user > "parmoo[extras]"

You can also clone this project from our GitHub and pip install it in-place, so that you can easily pull the latest version
or checkout the develop branch for pre-release features. On Debian-based systems with a bash shell, this looks like:

git clone https://github.com/parmoo/parmoo
cd parmoo
pip install -e .

Alternatively, the latest release of ParMOO (including all required and optional dependencies) can be installed from
the conda-forge channel using:

conda install --channel=conda-forge parmoo

Before doing so, it is recommended to create a new conda environment using:
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conda create --name channel-name
conda activate channel-name

For detailed instructions, see Advanced Installation.

1.1.3 Testing

If you have pytest with the pytest-cov plugin and flake8 installed, then you can test your installation.

python3 setup.py test

These tests are run regularly using GitHub Actions.

1.1.4 Basic Usage

ParMOO uses numpy in an object-oriented design, based around the MOOP class. To get started, create a MOOP object,
using the constructor.

from parmoo import MOOP
from parmoo.optimizers import LocalGPS

my_moop = MOOP(LocalGPS)

To summarize the framework, in each iteration ParMOO models each simulation using a computationally cheap surro-
gate, then solves one or more scalarizations of the objectives, which are specified by acquisition functions. Read more
about this framework at our Learn About MOOPs page. In the above example, optimizers.LocalGPS is the class
of optimizers that the my_moop will use to solve the scalarized surrogate problems.

Next, add design variables to the problem as follows using the MOOP.addDesign(*args) method. In this example,
we define one continuous and one categorical design variable. Other options include integer, custom, and raw (using
raw variables is not recommended except for expert users).

# Add a single continuous design variable in the range [0.0, 1.0]
my_moop.addDesign({'name': "x1", # optional, name

'des_type': "continuous", # optional, type of variable
'lb': 0.0, # required, lower bound
'ub': 1.0, # required, upper bound
'tol': 1.0e-8 # optional tolerance
})

# Add a second categorical design variable with 3 levels
my_moop.addDesign({'name': "x2", # optional, name

'des_type': "categorical", # required, type of variable
'levels': ["good", "bad"] # required, category names
})

Next, add simulations to the problem as follows using the MOOP.addSimulation(*args) method. In this example,
we define a toy simulation sim_func(x).

import numpy as np
from parmoo.searches import LatinHypercube
from parmoo.surrogates import GaussRBF

(continues on next page)

4 Chapter 1. User’s Guide

https://docs.pytest.org/en/7.0.x
https://pytest-cov.readthedocs.io/en/latest
https://flake8.pycqa.org/en/latest
https://github.com/parmoo/parmoo/actions
https://numpy.org


ParMOO User’s Manual, Release 0.3.1

(continued from previous page)

# Define a toy simulation for the problem, whose outputs are quadratic
def sim_func(x):
if x["x2"] == "good":
return np.array([(x["x1"] - 0.2) ** 2, (x["x1"] - 0.8) ** 2])

else:
return np.array([99.9, 99.9])

# Add the simulation to the problem
my_moop.addSimulation({'name': "MySim", # Optional name for this simulation

'm': 2, # This simulation has 2 outputs
'sim_func': sim_func, # Our sample sim from above
'search': LatinHypercube, # Use a LH search
'surrogate': GaussRBF, # Use a Gaussian RBF surrogate
'hyperparams': {}, # Hyperparams passed to internals
'sim_db': { # Optional dict of precomputed points

'search_budget': 10 # Set search budget
},

})

Now we can add objectives and constraints using MOOP.addObjective(*args) and MOOP.addConstraint(*args).
In this example, there are 2 objectives (each corresponding to a single simulation output) and one constraint.

# First objective just returns the first simulation output
def f1(x, s): return s["MySim"][0]
my_moop.addObjective({'name': "f1", 'obj_func': f1})
# Second objective just returns the second simulation output
def f2(x, s): return s["MySim"][1]
my_moop.addObjective({'name': "f2", 'obj_func': f2})
# Add a single constraint, that x[0] >= 0.1
def c1(x, s): return 0.1 - x["x1"]
my_moop.addConstraint({'name': "c1", 'constraint': c1})

Finally, we must add one or more acquisition functions using MOOP.addAcquisition(*args). These are used to
scalarize the surrogate problems. The number of acquisition functions typically determines the number of simulation
evaluations per batch. This is useful to know if you are using a parallel solver.

from parmoo.acquisitions import RandomConstraint

# Add 3 acquisition functions
for i in range(3):

my_moop.addAcquisition({'acquisition': RandomConstraint,
'hyperparams': {}})

Finally, the MOOP is solved using the MOOP.solve(budget) method, and the results can be viewed using MOOP.
getPF().

import pandas as pd

my_moop.solve(5) # Solve with 5 iterations of ParMOO algorithm
results = my_moop.getPF(format="pandas") # Extract the results as pandas df

After executing the above block of code, the results variable points to a pandas dataframe, each of whose rows
corresponds to a nondominated objective value in the my_moop object’s final database. You can reference individual
columns in the results array by using the name keys that were assigned during my_moop’s construction, or plot the
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results by using the viz library.

Congratulations, you now know enough to get started solving MOOPs!

1.1.5 Minimal Working Example

Putting it all together, we get the following minimal working example.

import numpy as np
import pandas as pd
from parmoo import MOOP
from parmoo.searches import LatinHypercube
from parmoo.surrogates import GaussRBF
from parmoo.acquisitions import RandomConstraint
from parmoo.optimizers import LocalGPS

# Fix the random seed for reproducibility
np.random.seed(0)

my_moop = MOOP(LocalGPS)

my_moop.addDesign({'name': "x1",
'des_type': "continuous",
'lb': 0.0, 'ub': 1.0})

my_moop.addDesign({'name': "x2", 'des_type': "categorical",
'levels': ["good", "bad"]})

def sim_func(x):
if x["x2"] == "good":
return np.array([(x["x1"] - 0.2) ** 2, (x["x1"] - 0.8) ** 2])

else:
return np.array([99.9, 99.9])

my_moop.addSimulation({'name': "MySim",
'm': 2,
'sim_func': sim_func,
'search': LatinHypercube,
'surrogate': GaussRBF,
'hyperparams': {'search_budget': 20}})

def f1(x, s): return s["MySim"][0]
def f2(x, s): return s["MySim"][1]
my_moop.addObjective({'name': "f1", 'obj_func': f1})
my_moop.addObjective({'name': "f2", 'obj_func': f2})

def c1(x, s): return 0.1 - x["x1"]
my_moop.addConstraint({'name': "c1", 'constraint': c1})

for i in range(3):
my_moop.addAcquisition({'acquisition': RandomConstraint,

'hyperparams': {}})

(continues on next page)
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(continued from previous page)

my_moop.solve(5)
results = my_moop.getPF(format="pandas")

# Display solution
print(results)

# Plot results -- must have extra viz dependencies installed
from parmoo.viz import scatter
# The optional arg `output` exports directly to jpg instead of interactive mode
scatter(my_moop, output="jpeg")

The above code saves all (approximate) Pareto optimal solutions in the results variable, and prints the results
variable to the standard output:

x1 x2 f1 f2 c1
0 0.742840 good 0.294675 0.003267 -0.642840
1 0.726092 good 0.276773 0.005462 -0.626092
2 0.605914 good 0.164766 0.037669 -0.505914
3 0.548931 good 0.121753 0.063036 -0.448931
4 0.543499 good 0.117991 0.065793 -0.443499
5 0.401011 good 0.040405 0.159192 -0.301011
6 0.353552 good 0.023578 0.199316 -0.253552
7 0.328402 good 0.016487 0.222404 -0.228402
8 0.269175 good 0.004785 0.281775 -0.169175
9 0.248183 good 0.002322 0.304502 -0.148183

And produces the following figure of the Pareto points:

1.1.6 Next Steps

• If you want to take advantage of all that ParMOO has to offer, please see Writing a ParMOO Script.

• If you would like more information on multiobjective optimization terminology and ParMOO’s methodology,
see the Learn About MOOPs page.

• For a full list of basic usage tutorials, see More Tutorials.

• To start solving MOOPs on parallel hardware, install libEnsemble and see the libEnsemble tutorial.

• See some of our pre-built solvers in the parmoo_solver_farm.

• To interactively explore your solutions, install its extra dependencies and use our built-in viz tool.

• For more advice, consult our FAQs.
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1.1.7 Resources

To seek support or report issues, e-mail:

• parmoo@mcs.anl.gov

Our full documentation is hosted on:

• ReadTheDocs

Please read our LICENSE and CONTRIBUTING files.

1.2 Advanced Installation

ParMOO can be installed with pip or directly from its GitHub source.

ParMOO’s base has the following dependencies, which may be automatically installed depending on your choice of
method:

• Python 3.6+

• numpy – for data structures and performant numerical linear algebra

• scipy – for scientific calculations needed for specific modules

• pyDOE – for generating experimental designs

• pandas – for exporting the resulting databases

Additional dependencies are needed to use the additional features in parmoo.extras:

• libEnsemble – for managing parallel simulation evaluations

And for using the Pareto front visualization library in parmoo.viz:

• plotly – for generating interactive plots

• dash – for hosting interactive plots in your browser

• kaleido – for exporting static plots post-interaction

If you want to run the tests (in parmoo.tests), then you will also need:

• pytest,

• pytest-cov, and

• flake8.

1.2.1 pip

The easiest way to install is via the PyPI package manager (pip utility). To install the latest release:

pip install < --user > parmoo

where the braces around < --user > indicate that the --user flag is optional.

Note that the default install will not install the extra dependencies, such as libEnsemble.

To install all dependencies, use:

pip install < --user > parmoo[extras]

1.2. Advanced Installation 9
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To check the installation by running the full test suite, use:

python3 setup.py test

which will also install the test dependencies (pytest, pytest-cov, and flake8).

1.2.2 Conda Forge

For some users (in particular, this is the recommended method for Windows users), the preferred method for obtaining
the latest release of ParMOO may be through the conda package manager. The latest release of ParMOO is avail-
able through the conda-forge channel. Note that conda does not support optional dependencies, so the following
command will automatically fetch all required and optional dependencies:

conda install --channel=conda-forge parmoo

Before running the above command, it is recommended to create a new conda environment to avoid conflicts. Do so
using:

conda create --name channel-name
conda activate channel-name

After performing a conda-forge installation of ParMOO, you can run our unit tests to make sure your installation is
working:

py.test --pyargs parmoo.tests.unit_tests

1.2.3 Install from GitHub source

You may want to install ParMOO from its GitHub source code, so that you can easily pull the latest updates.

The easiest way to do this is to clone it from our GitHub and then pip install it in-place by using the -e . option. In
a bash shell, that looks like this.

git clone https://github.com/parmoo/parmoo
cd parmoo
pip install -e .

This command will use the setup.py file to generate an egg inside the parmoo base directory.

Alternatively, you could just add the parmoo base directory to your PYTHONPATH environment variable. In the bash
shell, this looks like:

git clone https://github.com/parmoo/parmoo
cd parmoo
export PYTHONPATH=$PYTHONPATH:`pwd`

However, this technique will not install any of ParMOO’s dependencies.

Additionally, if you would like to use libEnsemble to handle parallel function evaluations (from extras.libe), you
will need to also install libEnsemble.

To install libEnsemble with PyPI, use

pip3 install libensemble
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or visit the libEnsemble_documentation for detailed installation instructions.

After installation, you can run the tests using either:

python3 setup.py test

(if you used the pip install -e . method), or:

parmoo/tests/run-tests.sh -cu<rl>

1.3 Learn about MOOPs

1.3.1 Overview

A multiobjective optimization problem (MOOP) is an optimization problem involving multiple, potentially conflicting,
objectives. MOOPs arise in many areas of science and engineering, for example, when designing a product or fitting a
model according to multiple performance criteria.

The goal of a MOOP is to find numerous solutions that describe the tradeoffs between these (potentially conflicting)
objectives. The solution to a MOOP is a set of achievable objective values (and corresponding design points), describing
the inherent tradeoffs in the problem. This tradeoff curve is called the Pareto front. Real-world MOOPs may also involve
some constraints—additional hard rules that every solution must adhere to.

In a multiobjective simulation-based optimization problem, the objectives are derived from the outputs of one or more
expensive simulations.

Here, we use the term simulation in its broadest sense. In our terminology, a simulation could refer to any data-
generating process of sufficient complexity, including

• numerical simulations run on a computer,

• physical experiments performed in a laboratory environment, and

• other nontrivial data-generating campaigns.

A simulation’s expense can be judged by any of several factors, including

1.3. Learn about MOOPs 11
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• the amount of time that is required to complete the simulation;

• the simulation’s occupation of valuable scientific resources, such as computing nodes or laboratory equipment;

• the need for expert/human involvement to validate simulation outputs; and

• consumption of raw resources such as energy or laboratory materials.

ParMOO is designed to solve multiobjective simulation-based optimization problems by exploiting the simulation-
based structure in such problems.

One of the key concepts in ParMOO is the distinction between simulations and objectives.
In ParMOO, a simulation is an expensive or time-consuming process: it may require significant computational resources
and may have a nonnegligible execution time.

S : 𝒳 → 𝒮, 𝒳 ⊂ R𝑛,𝒮 ⊂ R𝑚.

A single MOOP may involve multiple simulations, with varying costs, which map from the design variables to an
intermediate space

ParMOO provides a framework for solving these problems, while parallelizing simulation evaluations.

In ParMOO, both objectives and constraints are algebraic functions of the design variables and/or the simulation out-
puts. After evaluating the simulation(s), evaluating the objective is assumed to be computationally inexpensive and
tends to present a smaller opportunity for parallelization.

Objectives are expressed as

F : 𝒳 × 𝒮 → 𝒴, 𝒴 ⊂ R𝑜.

Constraints are expressed as

G : 𝒳 × 𝒮 → R𝑝.

ParMOO allows its users to separately specify simulations, objective functions, and constraint functions. ParMOO will
then utilize simulations sparingly, but it may use many objective and constraint evaluations to solve problems of the
form

min
x∈𝒳

F(x,S(x)) 𝑠.𝑡. G(x,S(x)) ≤ 0*.

* Here “min” is understood in the Pareto sense.
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1.3.2 ParMOO Algorithm

ParMOO uses response surface methodology to solve MOOPs. This means that ParMOO fits a computationally cheaper
surrogate to each output simulation, then optimizes various scalarizations of your problem using these surrogates in-
stead of running the expensive simulations.

The key difference between ParMOO and other response surface techniques is that ParMOO uses its surrogates to
model the simulation response surfaces, not to directly model the objective values. This allows ParMOO to exploit
additional information about your problem, in situations where it is available.

Common use cases include the following.

• One or more objectives does not depend on any simulation outputs and therefore can be evaluated directly without
concern for computational expense.

• The MOOP involves multiple simulations, each with differing costs, and therefore one simulation can be evalu-
ated far more times than the other.

• The objectives have some exploitable structure, for example, the sum-of-squared simulation outputs, which read-
ily admits additional information about the shape of the objective response surfaces.

This process has several key components, which ParMOO allows users to interchange.

• Before fitting any surrogates or performing any scalarizations, ParMOO must search the design space using one
of the GlobalSearch implementations from the parmoo.searches module.

• After some data has been generated, ParMOO fits and updates a surrogate for each simulation output using one
of the SurrogateFunction implementations from the parmoo.surrogates module.

• After fitting surrogates, ParMOO must scalarize the objectives so that it can solve the surrogate problems and
produce candidate design points using one of the AcquisitionFunction implementations from the parmoo.
acquisitions module.

• ParMOO must solve the scalarized surrogate optimization problems using one of the SurrogateOptimizer
implementations from the parmoo.optimizers module.

1.3. Learn about MOOPs 13
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You may mix and match built-in techniques to generate your own unique MOOP solver, or you may implement your
own techniques by employing one of the abstract base classes defined in parmoo.structs.

1.3.3 Glossary

• Acquisition function: An acquisition function is our language for a family of scalarizing functions, which can
be used to specify targets on the Pareto front. Acquisition functions may use objective scores, gradient values,
and/or uncertainty information in order to guide ParMOO’s search for an approximation to the Pareto front.

– Ex.– common acquisition functions from the literature include weighted sums (averages) of objective val-
ues, the epsilon constraint method, and expected hypervolume improvement.

• Design variable: A design variable is an input to your simulations, which can be controlled within some rea-
sonable bounds.

– Ex.- when designing an air foil using a fluid dynamics simulation, one design variable might be the angle
of attack.

– ParMOO currently supports continuous and categorical design variables.

• Design space: The design space is the underlying vector space where you could represent all possible design
variable combinations.

– Ex.- if you have 𝑛 continuous design variables, then your design space would be all of R𝑛.

• Constraint: A constraint is a requirement that every solution point must satisfy.

– Ex.- if your simulation code fails whenever 𝑥1 > 𝑥2, then you might impose the constraint: 𝑥2 − 𝑥1 ≤ 0.

• Hard constraint: A hard constraint cannot be violated by the MOOP solver. ParMOO will never attempt to
evaluate a point that violates a hard constraint.

– Ex.- your simulation code does not need to be defined for points that are outside the upper/lower bounds
on the design variables.

• Soft constraint: A soft constraint must be satisfied for a point to be considered a solution, but ParMOO may
violate it during the course of the optimization process.

– Ex.- all nonlinear constraints are soft constraints for ParMOO, and ParMOO will evaluate design points
that violate these constraints, especially early in the optimization process.

• Bound constraint: A bound constraint is a simple upper/lower bound on the range of design values. In ParMOO,
these are treated as hard constraints, while all other constraints are considered to be soft.

• Feasible design space: The feasible design space is the subset of the design space where all constraints (both
hard and soft) are satisfied. In other words, this is the set of all “legal” designs.

– Ex.- if you have n continuous design variables, constrained to the unit cube, then your entire design space
is still 𝑅𝑛, but your feasible design space is the cube [0, 1]𝑛.

• Simulation: A simulation can refer to any complex process for generating scientific or engineering data. This
includes both numerical simulations and laboratory experiments. The data that is gathered from your simulation
might used to compute your objectives, constraints, or both.

– Ex.- if you are designing a material, your simulation may be a molecular dynamics code or a process for
synthesizing new materials in the laboratory.

– Each simulation may have a single output or many outputs, which will be passed on as inputs to your
objectives and/or constraints.

• Objective: An objective is one of possibly many criteria that you will use to rank the “goodness” of a particular
design configuration. By convention, we assume that your goal is to minimize all objectives.
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– Ex.- if you are designing materials, you may want to minimize the production of unwanted byproducts.

– If your goal is actually to maximize an objective 𝑓𝑚𝑎𝑥, you may supply the negated value of that objective
−𝑓𝑚𝑎𝑥 to ParMOO.

• Feasible objective space: The feasible objective space is the image of the feasible design space – i.e., the set of
all objective values that can be obtained, by evaluating every objective at configurations from the feasible design
space.

– In practice, you will not know your feasible objective space a priori.

• Nondominated: A point y* in a set 𝒱 ⊂ R𝑝 is nondominated if for all y ∈ 𝒱 , either y = y* or y* is less than
y in at least one of its 𝑝 components.

– Objective values that are feasible and nondominated in the set of all observations make up the solution set
returned by ParMOO.

• Pareto optimal: A point in the feasible objective space is Pareto optimal for a given MOOP if it is nondominated
in the feasible objective space.

– This is a member of the true solution set for a MOOP.

– In practice, we cannot typically guarantee that any point in a multiobjective simulation optimization prob-
lem is Pareto optimal, so we return solutions that are nondominated among all other objective values that
we have observed.

• Pareto front: The Pareto front is the set of all Pareto optimal objective points.

– This is the true solution to a multiobjective optimization problem.

• Efficient set: The efficient set is the set of all corresponding design configurations that produce points on the
Pareto front.

– These are the solutions in the feasible design space, which are the pre-image of the Pareto front.

• Surrogate: A surrogate is a computational model that approximates another underlying function.

– Ex.- a trained artificial neural network, Gaussian process, RBF model, or spline interpolant.

• Scalarization: A scalarization technique reduces a MOOP into a single-objective optimization problem. Typi-
cally, solving the scalarized problem should produce a solution that is efficient/Pareto optimal.

– Ex.- minimize the weighted sum of all objectives in a MOOP to obtain a single efficient point/Pareto optimal
value.

• Design of experiments/experimental design: An experimental design is a set of design points that are in some
sense space filling and could be evaluated to gain some initial data for a particular simulation.

– Ex.- generate 100 uniform random samples within the feasible design space.

1.4 Write a ParMOO Script

1.4.1 The MOOP class

The MOOP class is the fundamental data structure in ParMOO. Below is a UML diagram showing the key public methods
and dependencies.
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To create an instance of the MOOP class, use the constructor.

from parmoo import MOOP
moop = MOOP(optimizer, hyperparams=hp)

In the above code snippet, optimizer should be an implementation of the SurrogateOptimizerAbstract-Base-Class
(ABC), and the optional input hp is a dictionary of hyperparameters for the optimizer object. The optimizer is the
surrogate optimization problem solver that will be used to generate candidate solutions for the MOOP. The choice of
surrogate optimizer determines what information will be required when defining each objective and constraint.

• If you use a derivative-free technique, such as LocalGPS, then you do not need to provide derivative information
for your objective or constraint functions.

• If you use a derivative-based technique, such as LBFGSB, then you need to provide an additional input to your
objectives and constraint functions, which can be set to evaluate their derivatives with respect to design inputs
and simulation outputs.

To avoid issues, it is best to define your MOOP in the following order.

1. Add design variables using MOOP.addDesign(*args).

2. Add simulations using MOOP.addSimulation(*args).

3. Add objectives using MOOP.addObjective(*args).

4. Add constraints using MOOP.addConstraint(*args).

5. Add acquisitions using MOOP.addAcquisition(*args).

All of these methods accept one or more args, each of which is a dictionary, as detailed in the corresponding sections
below.

1.4.2 The name Key and ParMOO Output Types

Each of the design, simulation, objective, and constraint dictionaries may contain an optional name key. By default,
the name of the simulations, objectives, and constraints default to {sim|f|c}i, where sim is for a simulation, f is for
an objective, c is for a constraint, and i=1,2,... is determined by the order in which each was added.

For example, if you add 3 simulations, then they will automatically be named sim1, sim2, and sim3 unless a different
name, was specified for one or more by including the name key. Similarly, objectives are named f1, f2, . . . , and
constraints are named c1, c2, . . . .

The design variables are the only exception to this rule.

Working with Named Outputs

When every design variable is given a name, then ParMOO formats its output in a numpy structured array, using the
given/default names to specify each field. This operation mode is recommended, especially for first-time users.

After adding all design variables, simulations, objectives, and constraints to the MOOP, you can check the numpy dtype
for each of these by using

• MOOP.getDesignType(),

• MOOP.getSimulationType(),

• MOOP.getObjectiveType(), and

• MOOP.getConstraintType().
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import numpy as np
from parmoo import MOOP
from parmoo.searches import LatinHypercube
from parmoo.surrogates import GaussRBF
from parmoo.acquisitions import UniformWeights
from parmoo.optimizers import LocalGPS

my_moop = MOOP(LocalGPS)

# Define a simulation to use below
def sim_func(x):

if x["MyCat"] == 0:
return np.array([(x["MyDes"]) ** 2, (x["MyDes"] - 1.0) ** 2])

else:
return np.array([99.9, 99.9])

# Add a design variable, simulation, objective, and constraint.
# Note the 'name' keys for each
my_moop.addDesign({'name': "MyDes",

'des_type': "continuous",
'lb': 0.0, 'ub': 1.0})

my_moop.addDesign({'name': "MyCat",
'des_type': "categorical",
'levels': 2})

my_moop.addSimulation({'name': "MySim",
'm': 2,
'sim_func': sim_func,
'search': LatinHypercube,
'surrogate': GaussRBF,
'hyperparams': {'search_budget': 20}})

my_moop.addObjective({'name': "MyObj",
'obj_func': lambda x, s: sum(s["MySim"])})

my_moop.addConstraint({'name': "MyCon",
'constraint': lambda x, s: 0.1 - x["MyDes"]})

# Extract numpy dtypes for all of this MOOP's inputs/outputs
des_dtype = my_moop.getDesignType()
obj_dtype = my_moop.getObjectiveType()
sim_dtype = my_moop.getSimulationType()

# Display the dtypes as strings
print("Design variable type: " + str(des_dtype))
print("Simulation output type: " + str(sim_dtype))
print("Objective type: " + str(obj_dtype))

The result is the following.

Design variable type: [('MyDes', '<f8'), ('MyCat', '<i4')]
Simulation output type: [('MySim', '<f8', (2,))]

(continues on next page)
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(continued from previous page)

Objective type: [('MyObj', '<f8')]

Working with Unnamed Outputs

If even a single design variable is left with a blank name key, then all input/output pairs are returned in a Python
dictionary, with the following keys:

• x_vals: (np.ndarray) of length 𝑑× 𝑛 – number of data points by number of design variables;

• s_vals: (np.ndarray) of length 𝑑 × 𝑚 – number of data points by number of outputs for a particular
simulation;

• f_vals: (np.ndarray) of length 𝑑× 𝑜 – number of data points by number of objectives;

• c_vals: (np.ndarray) of length 𝑑× 𝑐 – number of data points by number of constraints, if any.

Note that the value of 𝑑 (number of data points0 may vary by database). Each column in each of x_vals, s_vals,
f_vals, and c_vals will correspond to a specific design variable, simulation output, objective function, or constraint,
determined by the order in which they were added to the MOOP.

For first-time users, this execution mode may be confusing; however, for advanced users, the convenience of using
numpy.ndarrays over structured arrays may be preferable.

You can still use the type-getter methods from the previous section to check the dtype of each output, knowing that

• MOOP.getDesignType() is the dtype of the x_vals key (when present).

• MOOP.getSimulationType() is the dtype of the s_vals key (when present),

• MOOP.getObjectiveType() is the dtype of the f_vals key (when present), and

• MOOP.getConstraintType() is the dtype of the c_vals key (when present).

import numpy as np
from parmoo import MOOP
from parmoo.searches import LatinHypercube
from parmoo.surrogates import GaussRBF
from parmoo.acquisitions import UniformWeights
from parmoo.optimizers import LocalGPS

# Fix the random seed for reproducibility
np.random.seed(0)

my_moop = MOOP(LocalGPS)

# Define a simulation to use below
def sim_func(x):

return np.array([(x[0]) ** 2, (x[0] - 1.0) ** 2])

# Add a design variable, simulation, objective, and constraint, w/o name key
my_moop.addDesign({'des_type': "continuous",

'lb': 0.0, 'ub': 1.0})

my_moop.addSimulation({'m': 2,
'sim_func': sim_func,

(continues on next page)
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'search': LatinHypercube,
'surrogate': GaussRBF,
'hyperparams': {'search_budget': 20}})

my_moop.addObjective({'obj_func': lambda x, s: sum(s)})

my_moop.addConstraint({'constraint': lambda x, s: 0.1 - x[0]})

# Extract numpy dtypes for all of this MOOP's inputs/outputs
des_dtype = my_moop.getDesignType()
sim_dtype = my_moop.getSimulationType()
obj_dtype = my_moop.getObjectiveType()
const_dtype = my_moop.getConstraintType()

# Display the dtypes as strings
print("Design variable type: " + str(des_dtype))
print("Simulation output type: " + str(sim_dtype))
print("Objective type: " + str(obj_dtype))
print("Constraint type: " + str(const_dtype))
print()

# Add one acquisition and solve with 0 iterations to initialize databases
my_moop.addAcquisition({'acquisition': UniformWeights})
my_moop.solve(0)

# Extract final objective and simulation databases
obj_db = my_moop.getObjectiveData()
sim_db = my_moop.getSimulationData()

# Print the objective database dtypes
print("Objective database keys: " + str([key for key in obj_db.keys()]))
for key in obj_db.keys():

print("\t'" + key + "'" + " dtype: " + str(obj_db[key].dtype))
print("\t'" + key + "'" + " shape: " + str(obj_db[key].shape))

print()

# Print the simulation database dtypes
print("Simulation database type: " + str(type(sim_db)))
print("Simulation database length: " + str(len(sim_db)))
for i, dbi in enumerate(sim_db):

print("\tsim_db[" + str(i) + "] database keys: " +
str([key for key in dbi.keys()]))

for key in dbi.keys():
print("\t\t'" + key + "'" + " dtype: " + str(dbi[key].dtype))
print("\t\t'" + key + "'" + " shape: " + str(dbi[key].shape))

The result is below. Note that in this example, there are 𝑑 = 20 points in both the objective and simulation databases.

Design variable type: ('<f8', (1,))
Simulation output type: ('<f8', (2,))
Objective type: ('<f8', (1,))
Constraint type: ('<f8', (1,))

(continues on next page)
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Objective database keys: ['x_vals', 'f_vals', 'c_vals']
'x_vals' dtype: float64
'x_vals' shape: (20, 1)
'f_vals' dtype: float64
'f_vals' shape: (20, 1)
'c_vals' dtype: float64
'c_vals' shape: (20, 1)

Simulation database type: <class 'list'>
Simulation database length: 1

sim_db[0] database keys: ['x_vals', 's_vals']
'x_vals' dtype: float64
'x_vals' shape: (20, 1)
's_vals' dtype: float64
's_vals' shape: (20, 2)

1.4.3 Adding Design Variables

Design variables are added to your MOOP object using the addDesign(*args) method. ParMOO currently supports
several types of design variables:

• continuous (or real or cont),

• integer (or int),

• categorical (or cat),

• custom,

• raw – not recommended, for advanced users only.

To add a continuous variable, use the following format.

# Add a continuous design variable
moop.addDesign({'name': "MyContVar", # optional

'des_type': "continuous",
'lb': 0.0,
'ub': 1.0,
'des_tol': 1.0e-8})

• Note that when the des_type key is omitted, its value defaults to continuous.

• For continuous design variables, both a lower (lb) and upper (ub) bound must be specified. These bounds are
hard constraints, meaning that no simulations or objectives will be evaluated outside of these bounds.

• The optional key des_tol specifies a minimum step size between values for this design variable (default value
is 10−8). For this design variable, any two values that are closer than des_tol will be treated as exactly equal.

To add an integer design variable, use the following format.
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# Add an integer design variable
moop.addDesign({'name': "MyIntVar", # optional

'des_type': "integer",
'lb': 0,
'ub': 100})

• The lb and ub keys must be integer-valued, and serve the same purpose as with continuous design variables.

To add a categorical design variable, use the following format.

# Add a categorical design variable
moop.addDesign({'name': "MyCatVar", # optional

'des_type': "categorical",
'levels': 3})

• The levels key is either an integer specifying the number of categories taken on by this design variable (ParMOO
will index these levels by 0, 1, . . . , levels−1) or a list of strings specifying the name for each category (ParMOO
will use these names for the levels, e.g., ["first cat", "second cat", ... ]).

Note that because a numpy ndarray cannot contain string entries, when operating with unnamed variables, the levels
key may only contain the integer number of levels, and named categories cannot be used with unnamed design variables.

To add a custom design variable, use the following format.

# Add a custom design variable
moop.addDesign({'name': "MyCustomVar", # optional

'des_type': "custom",
'embedding_size': 1,
'embedder': my_embedding_func,
'extracter': my_extracting_func,
'dtype': "U25" # optional
})

• The embedding_size key tells ParMOO how many dimensions the embedding for this variable will be.

• The embedder key should be a function that maps the input type to to a point in the embedding_size-
dimensional unit hypercube.

• The extracter key should be a function that maps an arbitrary point in the embedding_size-dimensional unit
hypercube back to the input type (such that extracter(embedder(x)) = x).

• Optionally, the dtype key is a Python str specifying the numpy dtype of the input (defaults to U25, i.e., a
maximum 25-character string).
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Note that because a numpy ndarray cannot contain string entries, when operating with unnamed variables, the dtype
key is ignored, and the input must have a numeric type.

To add a raw design variable, use the following format. Please note that raw design variables are not recommended,
and one will typically need to write custom search, surrogate, optimizer, and acquisition functions/classes to
accomodate a raw variable. This feature is only included to allow flexibility for expert users.

# Add a raw design variable
moop.addDesign({'name': "MyRawVar", # optional

'des_type': "raw"})

Note that for every MOOP, at least one design variable is required before solving.

1.4.4 Adding Simulations

Before you can add a simulation to your MOOP, you must define the simulation function.

The simulation function can be either a Python function or a callable object.

The expected signature of your simulation function depends on whether you are working with named or unnamed
outputs.

When working with named variables, the simulation should take a single numpy structured array as input, whose keys
match the design variable names. The simulation function returns a numpy.ndarray containing the simulation output(s).

For example, with three design variables named x1, x2, and x3, you might define the quadraticS(x) = ‖x‖2 as follows.

def quadratic_sim(x):
return np.array([x["x1"] ** 2 + x["x2"] ** 2 + x["x3"] ** 2])

If you are working with unnamed variables, then the simulation will accept a numpy.ndarray of length n, where the
indices correspond to the order in which the design variables were added to the MOOP. The example above would
change as follows.

def quadratic_sim(x):
return np.array([x[0] ** 2 + x[1] ** 2 + x[2] ** 2])

To add your simulation to the MOOP object, use the addSimulation(*args) method.

from parmoo.searches import LatinHypercube
from parmoo.surrogates import GaussRBF

moop.addSimulation({'name': "MySim", # optional
'm': 1, # number of outputs
'sim_func': quadratic_sim, # simulation function
'search': LatinHypercube, # search technique
'surrogate': GaussRBF, # surrogate model
'hyperparams': {'search_budget': 20}})

In the above example,
• name is used as described in named or unnamed outputs;
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• m specifies the number of outputs for this simulation;

• sim_func is given a reference to the simulation function;

• search specifies the GlobalSearch that you will use when generating data for this particular simulation;

• surrogate specifies the class of SurrogateFunction that you will use to model this particular simula-
tion’s output;

• hyperparams is a dictionary of hyperparameter values that will be passed to the surrogate and search
technique objects. One particularly important key in the hyperparams dictionary is the search_budget
key, which specifies how many simulation evaluations should be used during the initial search phase.

If you wish, you may create a MOOP without any simulations.

Using a Precomputed Simulation Database

If you would like to specify a precomputed database, use the MOOP.update_sim_db(x, sx, s_name) method to
add all simulation data into ParMOO’s database after creating your MOOP but before solving. Be careful not to add
duplicate points, because these could cause numerical issues when fitting surrogate models.

import numpy as np
from parmoo import MOOP
from parmoo.searches import LatinHypercube
from parmoo.surrogates import GaussRBF
from parmoo.acquisitions import UniformWeights
from parmoo.optimizers import LocalGPS

my_moop = MOOP(LocalGPS)

my_moop.addDesign({'name': "x1",
'des_type': "continuous",
'lb': 0.0, 'ub': 1.0})

my_moop.addDesign({'name': "x2", 'des_type': "categorical",
'levels': 3})

def sim_func(x):
if x["x2"] == 0:
return np.array([(x["x1"] - 0.2) ** 2, (x["x1"] - 0.8) ** 2])

else:
return np.array([99.9, 99.9])

my_moop.addSimulation({'name': "MySim",
'm': 2,
'sim_func': sim_func,
'search': LatinHypercube,
'surrogate': GaussRBF,
'hyperparams': {'search_budget': 20}})

my_moop.addObjective({'name': "f1", 'obj_func': lambda x, s: s["MySim"][0]})
my_moop.addObjective({'name': "f2", 'obj_func': lambda x, s: s["MySim"][1]})

my_moop.addAcquisition({'acquisition': UniformWeights})

(continues on next page)
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# Precompute one simulation value for demo
des_val = np.zeros(1, dtype=[("x1", float), ("x2", int)])[0]
sim_val = sim_func(des_val)

# Add the precomputed simulation value from above
my_moop.update_sim_db(des_val, sim_val, "MySim")

# Get and display initial database
sim_db = my_moop.getSimulationData()
print(sim_db)

The output of the above code is shown below.

{'MySim': array([(0., 0, [0.04, 0.64])],
dtype=[('x1', '<f8'), ('x2', '<i4'), ('out', '<f8', (2,))])}

1.4.5 Adding Objectives

Objectives are algebraic functions of your design variables and simulation outputs. ParMOO always minimizes objec-
tives. If you would like to maximize instead, re-define the problem by minimizing the negative-value of your objective.

Just like with simulation functions, ParMOO accepts either a Python function or a callable object for each objective.
Make sure you match the expected signature, which depends on whether you are using named or unnamed outputs.

For named outputs, your objective function should accept two numpy structured arrays and return a single scalar output.
The following objective minimizes the output of the simulation output named MySim.

def min_sim(x, sim):
return sim["MySim"]

Similarly, the following objective minimizes the squared value of the design variable named MyDes.

def min_des(x, sim):
return x["MyDes"] ** 2

If you are using a gradient-based SurrogateOptimizer, then you are required to supply an additional input named
der, which defaults to 0. The der input is used as follows:

• der=0 (default) implies that no derivatives are taken, and you will return the objective function value;

• der=1 implies that you will return an array of derivatives with respect to each design variable; and

• der=2 implies that you will return an array of derivative with respect to each simulation output.

Note that for categorical variables ParMOO does not use the partial derivatives given here, and it is acceptable to fill
these slots with a garbage value or leave them uninitialized.

Modifying the above two objectives to support derivative-based solvers, we get the following.

def min_sim(x, sim, der=0):
if der == 0:

# No derivative, just return the value of sim["MySim"]
return sim["MySim"]

elif der == 1:
# Derivative wrt each design variable is 0

(continues on next page)
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return np.zeros(1, x.dtype)[0]
elif der == 2:

# Derivative wrt other simulations is 0, but df/d"MySim"=1
result = np.zeros(1, sim.dtype)[0]
result["MySim"] = 1.0
return result

def min_des(x, sim, der=0):
if der == 0:

# No derivative, just return the value of x["MyDes"] ** 2
return x["MyDes"] ** 2

elif der == 1:
# Derivative wrt other design vars is 0, but df/d"MyDes"=2"MyDes"
result = np.zeros(1, x.dtype)[0]
result["MyDes"] = 2.0 * x["MyDes"]
return result

elif der == 2:
# Derivative wrt each simulations is 0
return np.zeros(1, sim.dtype)[0]

For a full example showing how to solve a MOOP using a derivative-based solver, see Solving a MOOP with
Derivative-Based Solvers in Basic Tutorials.

When using ParMOO with unnamed outputs, each objective should accept two 1D numpy.ndarrays instead. The above
example would be modified as follows, assuming that MySim was the first simulation and MyDes was the first design
variable added to the MOOP.

def min_sim(x, sim, der=0):
if der == 0:

# No derivative, just return the value of sim[0]
return sim[0]

elif der == 1:
# Derivative wrt each design variable is 0
return np.zeros(x.size)

elif der == 2:
# Derivative wrt other simulations is 0, but df/dsim[0]=1
return np.eye(sim.size)[0]

def min_des(x, sim, der=0):
if der == 0:

# No derivative, just return the value of x["MyDes"] ** 2
return x[0] ** 2

elif der == 1:
# Derivative wrt other design vars is 0, but df/d"MyDes"=2"MyDes"
result = np.zeros(x.size)
result[0] = 2.0 * x[0]
return result

elif der == 2:
# Derivative wrt each simulations is 0
return np.zeros(sim.size)

To add the objective(s), use the MOOP.addObjective(*args) method.
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moop.addObjective({'name': "Min MySim",
'obj_func': min_sim})

moop.addObjective({'name': "Min MyDes",
'obj_func': min_des})

Note that for every MOOP, at least one objective is required before solving.

1.4.6 Adding Constraints

Adding constraints is similar to adding objectives. The main difference is in how ParMOO treats constraint functions.
Although ParMOO may evaluate infeasible design points along the way, ParMOO will search for solutions where all
constraints are less than or equal to zero.

For example, to add the constraint that the simulation MySim must have output greater than or equal to 0 and that the
design variable MyDes must be less than or equal to 0.9, you would define the following constraint functions.

def sim_constraint(x, sim):
return -1.0 * sim["MySim"]

def des_constraint(x, sim):
return x["MyDes"] - 0.9

As with objectives, if you want to use a gradient-based SurrogateOptimizer, you must modify the above constraint
functions as follows.

def sim_constraint(x, sim, der=0):
if der == 0:

return -1.0 * sim["MySim"]
elif der == 1:

return np.zeros(1, x.dtype)[0]
elif der == 2:

result = np.zeros(1, sim.dtype)[0]
result["MySim"] = -1.0
return result

def des_constraint(x, sim, der=0):
if der == 0:

return x["MyDes"] - 0.9
elif der == 1:

result = np.zeros(1, x.dtype)[0]
result["MyDes"] = 1.0
return result

elif der == 2:
return np.zeros(1, sim.dtype)[0]

If you are operating with unnamed variables, use indices similarly as with the objectives.

def sim_constraint(x, sim, der=0):
if der == 0:

return -1.0 * sim[0]
elif der == 1:

return np.zeros(x.size)
(continues on next page)
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elif der == 2:
return -np.eye(sim.size)[0]

def des_constraint(x, sim, der=0):
if der == 0:

return x[0] - 0.9
elif der == 1:

return np.eye(x.size)[0]
elif der == 2:

return np.zeros(sim.size)

To add the constraint(s), use the MOOP.addConstraint(*args) method.

moop.addConstraint({'name': "Constrain MySim",
'constraint': sim_constraint})

moop.addConstraint({'name': "Constrain MyDes",
'constraint': des_constraint})

You are not required to add any constraints of this form to your MOOP before solving.

1.4.7 Adding Acquisitions

After you have added all of the design variables, simulations, objectives, and constraints to your MOOP, you must add
one or more acquisitions using the MOOP.addAcquisition(*args) method.

from parmoo.acquisitions import RandomConstraint, FixedWeights

moop.addAcquisition({'acquisition': RandomConstraint})
moop.addAcquisition({'acquisition': FixedWeights,

'hyperparams': {'weights': np.array([0.5, 0.5])}})

The acquisition dictionary may contain two keys:
• acquisition (required) specifies one AcquisitionFunction that you would like to use for this problem;

and

• hyperparams (optional) specifies a dictionary of hyperparameter values that are used by the specified
AcquisitionFunction.

The number of acquisitions added determines the batch size for each of ParMOO’s batches of simulation evaluations
(which could be done in parallel). In general, if there are q acquisition functions and s simulations, then ParMOO
will generate batches of q*s simulations. In other words, each simulation is evaluated once per acquisition function
in each iteration of ParMOO’s algorithm.
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1.4.8 Logging and Checkpointing

When solving large or expensive problems, it is often a good idea to activate ParMOO’s logging and/or checkpointing
features.

Logging

For diagnostics, ParMOO logs its progress at the logging.INFO level. To display these log messages, turn on Python’s
INFO-level logging.

import logging
logging.basicConfig(level=logging.INFO)

If you would like to also print a formatted timestamp, use the Python logger’s built-in formatting options.

import logging
logging.basicConfig(level=logging.INFO,

[format='%(asctime)s %(levelname)-8s %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'])

Be aware that when using ParMOO together with libEnsemble, libE already comes with its own logging tools, which
are recommended, and ParMOO’s logging tools will not work.

Checkpointing

A ParMOO can be run with checkpointing turned on, so that your MOOP can be paused and resumed later, and your
simulation data can be recovered after a crash. Checkpointing is off by default. To turn it on, use the method:

• setCheckpoint(checkpoint, [checkpoint_data, filename])

moop.setCheckpoint(True, checkpoint_data=True, filename="parmoo")

The first argument tells ParMOO to save its internal class attributes and databases, so that they can be reloaded in the
future. In the above example, this save data will be written to a file in the calling directory, with the name parmoo.moop.

In order to save the problem definition, ParMOO needs to store information for reloading all of your functions. For this
to work:

• All functions (such as simulation functions, objective functions, and constraint functions) are defined in the
global scope;

• All modules are reloaded before attempting to recover a previously-saved MOOP object (by calling the
load(filename) method);

• ParMOO cannot reload lambda functions. Use only regular functions and callable objects when checkpointing.

If the option argument checkpoint_data is set to True (default), the ParMOO will also save a second copy of all
simulation evaluations in a human-readable JSON file in the same directory, with the name parmoo.simdb.json.
This file is not used by ParMOO, it is only provided for user-convenience.
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Reloading After Crash or Early Stop

After a crash or early termination, reload the saved .moop file to resume. Make sure that you first import any external
modules and redefine any functions that are needed by ParMOO (with the exact same signatures).

from parmoo import MOOP
from optimizers import [optimizer]

# Create a new MOOP object
moop = MOOP([optimizer])
# Reload the old problem
moop.load(filename="parmoo") # Use your savefile name, omitting ".moop"

Then resume your solve with an increased budget.

# Resume solve with increased budget
moop.solve(6)

Example

The example below shows how the Quickstart demo can be modified to use logging and checkpointing, including an
example of how to load a MOOP from a saved checkpoint file and resume running.

import numpy as np
from parmoo import MOOP
from parmoo.searches import LatinHypercube
from parmoo.surrogates import GaussRBF
from parmoo.acquisitions import UniformWeights
from parmoo.optimizers import LocalGPS
import logging

# Fix the random seed for reproducibility
np.random.seed(0)

# Create a new MOOP
my_moop = MOOP(LocalGPS)

# Add 1 continuous and 1 categorical design variable
my_moop.addDesign({'name': "x1",

'des_type': "continuous",
'lb': 0.0, 'ub': 1.0})

my_moop.addDesign({'name': "x2", 'des_type': "categorical",
'levels': 3})

# Create a simulation function
def sim_func(x):
if x["x2"] == 0:
return np.array([(x["x1"] - 0.2) ** 2, (x["x1"] - 0.8) ** 2])

else:
return np.array([99.9, 99.9])

# Add the simulation function to the MOOP
(continues on next page)
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my_moop.addSimulation({'name': "MySim",
'm': 2,
'sim_func': sim_func,
'search': LatinHypercube,
'surrogate': GaussRBF,
'hyperparams': {'search_budget': 20}})

# Define the 2 objectives as named Python functions
def obj1(x, s): return s["MySim"][0]
def obj2(x, s): return s["MySim"][1]

# Define the constraint as a function
def const(x, s): return 0.1 - x["x1"]

# Add 2 objectives
my_moop.addObjective({'name': "f1", 'obj_func': obj1})
my_moop.addObjective({'name': "f2", 'obj_func': obj2})

# Add 1 constraint
my_moop.addConstraint({'name': "c1", 'constraint': const})

# Add 3 acquisition functions (generates batches of size 3)
for i in range(3):

my_moop.addAcquisition({'acquisition': UniformWeights,
'hyperparams': {}})

# Turn on logging with timestamps
logging.basicConfig(level=logging.INFO,

format='%(asctime)s %(levelname)-8s %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')

# Use checkpointing without saving a separate data file (in "parmoo.moop" file)
my_moop.setCheckpoint(True, checkpoint_data=False, filename="parmoo")

# Solve the problem with 4 iterations
my_moop.solve(4)

# Create a new MOOP object and reload the MOOP from parmoo.moop file
new_moop = MOOP(LocalGPS)
new_moop.load("parmoo")

# Do another iteration
new_moop.solve(5)

# Display the solution
results = new_moop.getPF()
print(results, "\n dtype=" + str(results.dtype))

The result is the following.

[(0.79013666, 0, 3.48261275e-01, 9.72855201e-05, -0.69013666)
(0.7895263 , 0, 3.47541259e-01, 1.09698380e-04, -0.6895263 )

(continues on next page)
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(0.73488156, 0, 2.86098283e-01, 4.24041125e-03, -0.63488156)
(0.70656124, 0, 2.56604287e-01, 8.73080244e-03, -0.60656124)
(0.68409101, 0, 2.34344111e-01, 1.34348928e-02, -0.58409101)
(0.67237225, 0, 2.23135544e-01, 1.62888423e-02, -0.57237225)
(0.5784217 , 0, 1.43202981e-01, 4.90969442e-02, -0.4784217 )
(0.53031761, 0, 1.09109723e-01, 7.27285920e-02, -0.43031761)
(0.51322778, 0, 9.81116425e-02, 8.22383058e-02, -0.41322778)
(0.49723345, 0, 8.83477213e-02, 9.16675863e-02, -0.39723345)
(0.44987019, 0, 6.24351129e-02, 1.22590882e-01, -0.34987019)
(0.40591372, 0, 4.24004606e-02, 1.55303995e-01, -0.30591372)
(0.39028872, 0, 3.62097978e-02, 1.67863331e-01, -0.29028872)
(0.38995793, 0, 3.60840145e-02, 1.68134501e-01, -0.28995793)
(0.38287784, 0, 3.34443041e-02, 1.73990897e-01, -0.28287784)
(0.25435646, 0, 2.95462529e-03, 2.97726867e-01, -0.15435646)
(0.20137796, 0, 1.89878434e-06, 3.58348342e-01, -0.10137796)]
dtype=[('x1', '<f8'), ('x2', '<i4'), ('f1', '<f8'), ('f2', '<f8'), ('c1', '<f8')]

1.4.9 Methods for Solving

Once you have finished creating your MOOP object and adding all design variables, simulations, objectives, constraints,
and acquisitions, you are ready to solve your problem.

The easiest way to solve is by using MOOP.solve(k). Here, k is the number of iterations of ParMOO’s algorithm that
you would like to perform. Note that a value of k=0 is legal, and will result in ParMOO generating and evaluating an
experimental design and fitting its surrogates, without ever attempting to solve a single scalarized surrogate problems.

# Evaluate an experimental design, then performing 5 iterations
moop.solve(5)

Note that the above command will perform all simulation evaluations serially. To generate a batch of simulations that
you could evaluate in parallel, use MOOP.iterate(k), where k is the iteration index. You can let ParMOO handle the
simulation evaluations with MOOP.evaluateSimulation(x, s_name), or you can evaluate the simulations yourself
and add them to the simulation database using MOOP.update_sim_db(x, sx, s_name). Afterward, call MOOP.
updateAll(k, batch) to update the surrogate models and objective database.

# Do 5 iterations letting ParMOO handle simulation evaluation
# Note that the i=0 iteration will just generate an experimental design
for i in range(5):

# Get batch
batch = moop.iterate(i)
# Let ParMOO evaluate design point x for simulation s_name
for (x, s_name) in batch:

moop.evaluateSimulation(x, s_name)
# Update ParMOO models
moop.updateAll(i, batch)

or

# Solve another MOOP, doing simulation evaluation manually
for i in range(5):

# Get batch
batch = moop.iterate(i)

(continues on next page)
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# User evaluates design point x for simulation s_name
for (x, s_name) in batch:

### User code to evaluate x with sim["s_name"] goes HERE ###
### Store results in variable sx ###
moop.update_sim_db(x, sx, s_name)

# Update ParMOO models
moop.updateAll(i, batch)

Additional ParMOO solver execution paradigms (including those where ParMOO will handle parallel execution on the
user’s behalf) are included under Additional ParMOO Plugins and Features.

1.4.10 Viewing Your Results

After solving the MOOP, you can view the results using MOOP.getPF().

soln = moop.getPF()

The output format defaults to a numpy structured array. However, you can change it to a pandas dataframe using the
optional format argument.

soln = moop.getPF(format="pandas")

Note that format="pandas" is only supported when working with named outputs.

To get the full simulation and objective databases, you can also use MOOP.getSimulationData() and MOOP.
getObjectiveData().

sim_db = moop.getSimulationData()
obj_db = moop.getObjectiveData()

To understand the format of these outputs, please revisit the section on The name Key and ParMOO Output Types.

Finally, if you have installed ParMOO with its extra dependencies (see the Advanced Installation), then you can visualize
your results using any of the viz.scatter(), viz.parallel_coordinates(), or viz.radar() functions.

from parmoo.viz import scatter

scatter(moop)

Note that these plots are interactive and will render in a Dash app hosted locally on your computer. There are known
issues when using the Chrome browser.

For more information, view the complete viz API page.
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1.4.11 Built-in and Custom Components

By now you can see that the performance of ParMOO is determined by your choices of

• AcquisitionFunction,

• GlobalSearch,

• SurrogateFunction, and

• SurrogateOptimizer.

You can find the current options for each of these in the following modules.

• parmoo.acquisitions

• parmoo.searches

• parmoo.surrogates

• parmoo.optimizers

You can also create your own custom implementations for each of the above, by implementing one of the abstract base
classes in structs.

1.5 Extras and Plugins

1.5.1 Running in Parallel using libEnsemble

libEnsemble is a Python library to “coordinate concurrent evaluation of dynamic ensembles of calculations.” Read
more about libEnsemble by visiting the libEnsemble documentation.

The libE_MOOP class is used to solve MOOPs using libEnsemble. The libE_MOOP class inherits from MOOP and
supports all of the public methods in its API.

To create an instance of the libE_MOOP class, import it from the extras.libe module and then create a MOOP, just
as you normally would. The solve() method has been redefined to create a libEnsemble Persistent Generator func-
tion, which libEnsemble can call to generate batches of simulation evaluations, which it will distribute over available
resources.

Below we reproduce the example from the Quickstart guide, using a libE_MOOP object.

Note that it is always recommended that you turn on checkpointingwhen using libEnsemble. Since setCheckpoint
method does not support the usage of Python lambda functions, each of the objectives and constraints is explicitly
defined.

import numpy as np
from parmoo.extras.libe import libE_MOOP
from parmoo.searches import LatinHypercube
from parmoo.surrogates import GaussRBF
from parmoo.acquisitions import UniformWeights
from parmoo.optimizers import LocalGPS

# When running with MPI, we need to keep track of which thread is the manager
# using libensemble.tools.parse_args()
from libensemble.tools import parse_args
_, is_manager, _, _ = parse_args()

(continues on next page)
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# All functions are defined below.

def sim_func(x):
if x["x2"] == 0:
return np.array([(x["x1"] - 0.2) ** 2, (x["x1"] - 0.8) ** 2])

else:
return np.array([99.9, 99.9])

def obj_f1(x, s):
return s["MySim"][0]

def obj_f2(x, s):
return s["MySim"][1]

def const_c1(x, s):
return 0.1 - x["x1"]

# When using libEnsemble with Python MP, the "solve" command must be enclosed
# in an "if __name__ == '__main__':" block, as shown below
if __name__ == "__main__":

# Fix the random seed for reproducibility
np.random.seed(0)

# Create a libE_MOOP
my_moop = libE_MOOP(LocalGPS)

# Add 2 design variables (one continuous and one categorical)
my_moop.addDesign({'name': "x1",

'des_type': "continuous",
'lb': 0.0, 'ub': 1.0})

my_moop.addDesign({'name': "x2", 'des_type': "categorical",
'levels': 3})

# Add the simulation (note the budget of 20 sim evals during search phase)
my_moop.addSimulation({'name': "MySim",

'm': 2,
'sim_func': sim_func,
'search': LatinHypercube,
'surrogate': GaussRBF,
'hyperparams': {'search_budget': 20}})

# Add the objectives
my_moop.addObjective({'name': "f1", 'obj_func': obj_f1})
my_moop.addObjective({'name': "f2", 'obj_func': obj_f2})

# Add the constraint
my_moop.addConstraint({'name': "c1", 'constraint': const_c1})

# Add 3 acquisition functions
for i in range(3):

my_moop.addAcquisition({'acquisition': UniformWeights,

(continues on next page)
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'hyperparams': {}})

# Turn on checkpointing -- creates files parmoo.moop & parmoo.surrogate.1
my_moop.setCheckpoint(True, checkpoint_data=False, filename="parmoo")

# Use sim_max = 30 to perform just 30 simulations
my_moop.solve(sim_max=30)

# Display the solution -- this "if" clause is needed when running with MPI
if is_manager:

results = my_moop.getPF(format="pandas")
print(results)

To run a ParMOO/libEnsemble script, first make sure that libEnsemble is installed. You can find instructions on how
to do so under libEnsemble’s Advanced Installation documentation.

Next, run libEnsemble as described in the Running libEnsemble section. Common methods of running a libEnsemble
script are with MPI

mpirun -np N python3 libe_basic_ex.py

and with Python’s built-in multiprocessing module.

python3 libe_basic_ex.py --comms local --nworkers N

• Note: When running a libE_MOOP with Python multiprocessing, MacOS and Windows systems default to using
the spawnmethod. When using the spawnmethod, one must enclose the libE_MOOP.solve() command inside
an if __name__ == '__main__': block, as shown in the example above. Read more about the issue here:

https://libensemble.readthedocs.io/en/main/running_libE.html#local-comms

The result from running the example is shown below.

x1 x2 f1 f2 c1
0 0.742825 0 0.294659 0.003269 -0.642825
1 0.680283 0 0.230672 0.014332 -0.580283
2 0.616501 0 0.173473 0.033672 -0.516501
3 0.580369 0 0.144680 0.048238 -0.480369
4 0.555222 0 0.126183 0.059916 -0.455222
5 0.518980 0 0.101749 0.078972 -0.418980
6 0.475477 0 0.075888 0.105315 -0.375477
7 0.302503 0 0.010507 0.247503 -0.202503
8 0.201285 0 0.000002 0.358460 -0.101285
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1.6 References

1.6.1 Additional Resources

To seek support or report issues, e-mail:

• parmoo@mcs.anl.gov

For permissions, see the following:

• LICENSE

• CONTRIBUTING

Our full user guide is hosted here:

• ReadTheDocs

1.6.2 Reference Format

Please use one of the following to cite ParMOO.

Our JOSS paper:

@article{parmoo,
author={Chang, Tyler H. and Wild, Stefan M.},
title={{ParMOO}: A {P}ython library for parallel multiobjective simulation␣

→˓optimization},
year={2023},
journal = {Journal of Open Source Software},
volume = {8},
number = {82},
pages = {4468},
doi = {10.21105/joss.04468}

}

Our online documentation:

@techreport{parmoo-docs,
title = {{ParMOO}: {P}ython library for parallel multiobjective simulation␣

→˓optimization},
author = {Chang, Tyler H. and Wild, Stefan M. and Dickinson, Hyrum},
institution = {Argonne National Laboratory},
number = {Version 0.3.1},
year = {2023},
url = {https://parmoo.readthedocs.io/en/latest}

}
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Chapter 2
API

2.1 ParMOO API

2.1.1 Basic ParMOO Classes/Objects

ParMOO uses an object-oriented design, where users start by creating a MOOP object, defining their problem.

The type of MOOP that you use determines what kind of resources you will use to solve the problem.

Current options are:

Base (serial) MOOP Class

This is the base class for solving MOOPs with ParMOO.

from parmoo import moop

Use this class to define and solve a MOOP. The MOOP.solve(...) method will perform simulations serially for this
class.

Contains the MOOP class for defining multiobjective optimization problems.

parmoo.moop.MOOP is the base class for defining and solving multiobjective optimization problems (MOOPs). Each
MOOP object may contain several simulations, specified using dictionaries.

class moop.MOOP(opt_func, hyperparams=None)
Class for defining a multiobjective optimization problem (MOOP).

Upon initialization, supply a scalar optimization procedure and dictionary of hyperparameters using the default
constructor:

• MOOP.__init__(ScalarOpt, [hyperparams={}])

Class methods are summarized below.

To define the MOOP, add each design variable, simulation, objective, and constraint (in that order) by using the
following functions:

• MOOP.addDesign(*args)

• MOOP.addSimulation(*args)
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• MOOP.addObjective(*args)

• MOOP.addConstraint(*args)

Next, define your solver.

Acquisition functions (used for scalarizing problems/setting targets) are added using:

• MOOP.addAcquisition(*args)

After creating a MOOP, the following methods may be useful for getting the numpy.dtype of the input/output
arrays:

• MOOP.getDesignType()

• MOOP.getSimulationType()

• MOOP.getObjectiveType()

• MOOP.getConstraintType()

The following methods are used to save/load ParMOO objects from memory:
• MOOP.save([filename="parmoo"])

• MOOP.load([filename="parmoo"])

To turn on checkpointing, use:
• MOOP.setCheckpoint(checkpoint, [checkpoint_data, filename])

ParMOO also offers logging. To turn on logging, activate INFO-level logging by importing Python’s built-in
logging module.

After defining the MOOP and setting up checkpointing and logging info, use the following method to solve the
MOOP (serially):

• MOOP.solve(iter_max=None, sim_max=None)

The following methods are used for solving the MOOP and managing the internal simulation/objective databases:

• MOOP.check_sim_db(x, s_name)

• MOOP.update_sim_db(x, sx, s_name)

• MOOP.evaluateSimulation(x, s_name)

• MOOP.addData(x, sx)

• MOOP.iterate(k, ib)

• MOOP.updateAll(k, batch)

Finally, the following methods are used to retrieve data after the problem has been solved:

• MOOP.getPF(format='ndarray')

• MOOP.getSimulationData(format='ndarray')

• MOOP.getObjectiveData(format='ndarray')

The following methods are not recommended for external usage:
• MOOP.__extract__(x)

• MOOP.__embed__(x)

• MOOP.__generate_encoding__()
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• MOOP.__unpack_sim__(sx)

• MOOP.__pack_sim__(sx)

• MOOP.fitSurrogates()

• MOOP.updateSurrogates()

• MOOP.resetSurrogates(center)

• MOOP.evaluateSurrogates(x)

• MOOP.surrogateUncertainty(x)

• MOOP.evaluateObjectives(x)

• MOOP.evaluateConstraints(x)

• MOOP.evaluatePenalty(x)

• MOOP.evaluateGradients(x)

__init__(opt_func, hyperparams=None)
Initializer for the MOOP class.

Parameters
• opt_func (SurrogateOptimizer) – A solver for the surrogate problems.

• hyperparams (dict, optional) – A dictionary of hyperparameters for the opt_func,
and any other procedures that will be used.

Returns
A new MOOP object with no design variables, objectives, or constraints.

Return type
MOOP

__extract__(x)
Extract a design variable from an n-dimensional vector.

Parameters
x (numpy.ndarray) – A 1D numpy.ndarray containing the embedded design variable.

Returns
Either a numpy structured array (when using named variables) or a 1D numpy.ndarray con-
taining the extracted design variable values. Note that when working in unnamed mode, the
design variable indices were assigned in the order that they were added to the MOOP using
MOOP.addDesign(*args).

Return type
numpy.ndarray or numpy structured array

__embed__(x)
Embed a design input as n-dimensional vector for ParMOO.

Parameters
x (numpy.ndarray or numpy structured array) – Either a numpy structured array
(when working with named design variables) or a 1D numpy.ndarray containing design vari-
able values. Note that when working in unnamed mode, the design variable indices were
assigned in the order that they were added to the MOOP using MOOP.addDesign(*args).

Returns
A 1D array containing the embedded design vector.
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Return type
numpy.ndarray

__generate_encoding__()

Generate the encoding matrices for this MOOP.

__unpack_sim__(sx)
Extract a simulation output from a m-dimensional vector.

Parameters
sx (numpy.ndarray) – A 1D numpy.ndarray containing the vectorized simulation output(s).

Returns
Either a numpy structured array (when operating with named variables) or the unmodified
input sx.

Return type
numpy.ndarray or numpy structured array

__pack_sim__(sx)
Pack a simulation output into a m-dimensional vector.

Parameters
sx (numpy.ndarray or numpy structured array) – A numpy structured array (when
operating with named variables) or a m-dimensional vector.

Returns
A 1D numpy.ndarray of length m.

Return type
numpy.ndarray

addDesign(*args)
Add a new design variables to the MOOP.

Append new design variables to the problem. Note that every design variable must be added before any
simulations or acquisition functions can be added since the number of design variables is used to infer the
size of the simulation databases and the acquisition function initialization.

Parameters
args (dict) – Each argument is a dictionary representing one design variable. The dictionary
contains information about that design variable, including:

• ’name’ (str, optional): The name of this design if any are left blank, then ALL names are
considered unspecified.

• ’des_type’ (str): The type for this design variable. Currently supported options are:

– ’continuous’ (or ‘cont’ or ‘real’)

– ’categorical’ (or ‘cat’)

– ’integer’ (or ‘int’)

– ’custom’

– ’raw’ – for advanced use only, not recommended

• ’lb’ (float): When des_type is ‘continuous’ or ‘integer’, this specifies the lower bound for
the design variable. This value must be specified, and must be strictly less than ‘ub’ (below)
up to the tolerance (below).
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• ’ub’ (float): When des_type is ‘continuous’ or ‘integer’, this specifies the upper bound for
the design variable. This value must be specified, and must be strictly greater than ‘lb’
(above) up to the tolerance (below).

• ’des_tol’ (float): When des_type is ‘continuous’, this specifies the tolerance, i.e., the mini-
mum spacing along this dimension, before two design values are considered to have equal
values in this dimension. If not specified, the default value is 1.0e-8 * (ub - lb).

• ’levels’ (int or list): When des_type is ‘categorical’, this specifies the number of levels for
the variable (when int) or the names of each valid category (when a list).

• ’embedding_size’ (int): When des_type is ‘custom’, this specifies the dimension of the
custom embedding.

• ’dtype’ (str): When des_type is ‘custom’, this contains a string specifying the numpy dtype
of the custom input. Only used when operating with named variables, otherwise it must be
numeric. When using named variables, defaults to ‘U25’.

• ’embedder’: When des_type is ‘custom’, this is a custom embedding function, which maps
the input to a point in the unit hypercube of dimension ‘embedding_size’.

• ’extracter’: When des_type is ‘custom’, this is a custom extracting function, which maps
a point in the unit hypercube of dimension ‘embedding_size’ to a legal input value of type
‘dtype’.

addSimulation(*args)
Add new simulations to the MOOP.

Append new simulation functions to the problem.

Parameters
args (dict) – Each argument is a dictionary representing one simulation function. The
dictionary must contain information about that simulation function, including:

• name (str, optional): The name of this simulation (defaults to “sim” + str(i), where i = 1,
2, 3, . . . for the first, second, third, . . . simulation added to the MOOP).

• m (int): The number of outputs for this simulation.

• sim_func (function): An implementation of the simulation function, mapping from R^n ->
R^m. The interface should match: sim_out = sim_func(x).

• search (GlobalSearch): A GlobalSearch object for performing the initial search over this
simulation’s design space.

• surrogate (SurrogateFunction): A SurrogateFunction object specifying how this simula-
tion’s outputs will be modeled.

• hyperparams (dict): A dictionary of hyperparameters, which will be passed to the surrogate
and search routines. Most notably, the ‘search_budget’: (int) can be specified here.

addObjective(*args)
Add a new objective to the MOOP.

Append a new objective to the problem. The objective must be an algebraic function of the design variables
and simulation outputs. Note that all objectives must be specified before any acquisition functions can be
added.

Parameters
*args (dict) – Python dictionary containing objective function information, including:

• ’name’ (str, optional): The name of this objective (defaults to “obj” + str(i), where i = 1, 2,
3, . . . for the first, second, third, . . . simulation added to the MOOP).

42 Chapter 2. API



ParMOO User’s Manual, Release 0.3.1

• ’obj_func’ (function): An algebraic objective function that maps from R^n X R^m –> R.
Interface should match: cost = obj_func(x, sim_func(x), der=0), where der is an optional
argument specifying whether to take the derivative of the objective function

– 0 – no derivative taken, return f(x, sim_func(x))

– 1 – return derivative wrt x, or

– 2 – return derivative wrt sim(x).

• ’exp_func’ (function): An algebraic objective function that calculates the expected value
and distribution of an objective, given that surrogate outputs are Gaussian distributed with
given mean and variance. Accepts three inputs. The first input represents x, the second
input is the expected value of S(x), and the third input represents the standard deviation of
S(x) – assuming S(x) is Gaussian distributed. The output is the expected value of f(x, S).
Interface should match: `cost = exp_func(x, sim_mean, sim_std_dev, der=0,

sd=False)`,

where der is an optional argument specifying whether to evaluate the derivative

– 0 – no derivative taken, return f(x, sim_func(x))

– 1 – return derivative wrt x,

– 2 – return derivative wrt expected value of sim(x), or

– 3 – return derivative wrt std deviation of sim(x).

addConstraint(*args)
Add a new constraint to the MOOP.

Append a new constraint to the problem. The constraint can be a linear or nonlinear inequality constraint,
and may depend on the design variables and/or the simulation outputs.

Parameters
args (dict) – Python dictionary containing constraint function information, including:

• ’name’ (str, optional): The name of this constraint (defaults to “const” + str(i), where i =
1, 2, 3, . . . for the first, second, third, . . . constraint added to the MOOP).

• ’constraint’ (function): An algebraic constraint function that maps from R^n X R^m –> R
and evaluates to zero or a negative number when feasible and positive otherwise. Interface
should match: violation = constraint(x, sim_func(x), der=0), where der is an optional
argument specifying whether to take the derivative of the constraint function

– 0 – no derivative taken, return c(x, sim_func(x))

– 1 – return derivative wrt x, or

– 2 – return derivative wrt sim(x).

Note that any constraint(x, sim_func(x), der=0) <= 0 indicates that x is fea-
seible, while constraint(x, sim_func(x), der=0) > 0 indicates that x is infeasible,
violating the constraint by an amount proportional to the output. It is the user’s responsi-
bility to ensure that after adding all constraints, the feasible region is nonempty and has
nonzero measure in the design space.

• ’exp_func’ (function): An algebraic objective function that calculates the expected value
and distribution of the constraint penalty, given that surrogate outputs are Gaussian dis-
tributed with given mean and variance. Accepts three inputs. The first input represents x,
the second input is the expected value of S(x), and the third input represents the standard
deviation of S(x) – assuming S(x) is Gaussian distributed. The output is the expected value
of c(x, S). Interface should match: `penalty = exp_func(x, sim_mean, sim_std_dev, der=0,
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sd=False)`,

where der is an optional argument specifying whether to evaluate the derivative

– 0 – no derivative taken, return exp val c(x, Sx)

– 1 – return derivative wrt x,

– 2 – return derivative wrt expected value of sim(x), or

– 3 – return derivative wrt std deviation of sim(x).

addAcquisition(*args)
Add an acquisition function to the MOOP.

Append a new acquisition function to the problem. In each iteration, each acquisition is used to generate
one or more points to evaluate Typically, each acquisition generates one evaluation per simulation function.

Parameters
args (dict) – Python dictionary of acquisition function info, including:

• ’acquisition’ (AcquisitionFunction): An acquisition function that maps from R^o –> R for
scalarizing outputs.

• ’hyperparams’ (dict): A dictionary of hyperparameters for the acquisition functions. Can
be omitted if no hyperparameters are needed.

setCheckpoint(checkpoint, checkpoint_data=True, filename='parmoo')
Set ParMOO’s checkpointing feature.

Note that for checkpointing to work, all simulation, objective, and constraint functions must be defined in
the global scope. ParMOO also cannot save lambda functions.

Parameters
• checkpoint (bool) – Turn checkpointing on (True) or off (False).

• checkpoint_data (bool, optional) – Also save raw simulation output in a separate
JSON file (True) or rely on ParMOO’s internal simulation database (False). When omitted,
this parameter defaults to False.

• filename (str, optional) – Set the base checkpoint filename/path. The checkpoint
file will have the JSON format and the extension “.moop” appended to the end of filename.
Additional checkpoint files may be created with the same filename but different extensions,
depending on the choice of AcquisitionFunction, SurrogateFunction, and GlobalSearch.
When omitted, this parameter defaults to “parmoo” and is saved inside current working
directory.

getDesignType()

Get the numpy dtype of all design points for this MOOP.

Use this type when allocating a numpy array to store the design points for this MOOP object.

Returns
The numpy dtype of this MOOP’s design points. If no design variables have yet been added,
returns None.

Return type
np.dtype

getSimulationType()

Get the numpy dtypes of the simulation outputs for this MOOP.

Use this type if allocating a numpy array to store the simulation outputs of this MOOP object.
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Returns
The numpy dtype of this MOOP’s simulation outputs. If no simulations have been given,
returns None.

Return type
np.dtype

getObjectiveType()

Get the numpy dtype of an objective point for this MOOP.

Use this type if allocating a numpy array to store the objective values of this MOOP object.

Returns
The numpy dtype of this MOOP’s objective points. If no objectives have yet been added,
returns None.

Return type
np.dtype

getConstraintType()

Get the numpy dtype of the constraint violations for this MOOP.

Use this type if allocating a numpy array to store the constraint scores output of this MOOP object.

Returns
The numpy dtype of this MOOP’s constraint violation outputs. If no constraint functions have
been given, returns None.

Return type
np.dtype

check_sim_db(x, s_name)
Check self.sim_db[s_name] to see if the design x was evaluated.

x (np.ndarray or numpy structured array): A 1d numpy.ndarray or numpy
structured array specifying the design point to check for.

s_name (str or int): The name or index of the simulation where
(x, sx) will be added. Note, indices are assigned in the order the simulations were listed during initial-
ization.

Returns
returns None if x is not in self.sim_db[s_name] (up to the design tolerance). Otherwise,
returns the corresponding value of sx.

Return type
None or numpy.ndarray

update_sim_db(x, sx, s_name)
Update sim_db[s_name] by adding a design/simulation output pair.

x (np.ndarray or numpy structured array): A 1d numpy.ndarray or numpy
structured array specifying the design point to add.

sx (np.ndarray): A 1d numpy.ndarray containing the corresponding
simulation output.

s_name (str or int): The name or index of the simulation to whose
database the pair (x, sx) will be added. Note, when using unnamed variables and simulations, the
simulation indices were assigned in the same order that the simulations were added to the MOOP
(using MOOP.addSimulation(*args)) during initialization.
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evaluateSimulation(x, s_name)
Evaluate sim_func[s_name] and store the result in the database.

Parameters
• x (numpy.ndarray or numpy structured array) – Either a numpy structured array

(when using named variables) or a 1D numpy.ndarray containing the values of the design
variable to evaluate. Note, when operating with unnamed variables, design variables are
indices were assigned in the order that the design variables were added to the MOOP using
MOOP.addDesign(*args).

• s_name (str, int) – The name or index of the simulation to evaluate. Note, when op-
erating with unnamed variables, simulation indices were assigned in the order that the
simulations were added to the MOOP using MOOP.addSimulation(*args).

Returns
A 1d numpy.ndarray containing the output from the sx = simulation[s_name](x).

Return type
numpy.ndarray

fitSurrogates()

Fit the surrogate models using the current sim databases.

Warning: Not recommended for external usage!

updateSurrogates()

Update the surrogate models using the current sim databases.

Warning: Not recommended for external usage!

resetSurrogates(center)
Reset the surrogates using SurrogateFunction.setCenter(center).

Warning: Not recommended for external usage!

Parameters
center (numpy.ndarray) – A 1d numpy.ndarray containing the (embedded) coordinates of
the new center in the rescaled design space.

Returns
The minimum over the recommended trust region radius for all surrogates.

Return type
float

evaluateSurrogates(x)
Evaluate all simulation surrogates.

Warning: Not recommended for external usage!

Parameters
x (numpy.ndarray) – A 1d numpy.ndarray containing the (embedded) design point to eval-
uate.

Returns
A 1d numpy.ndarray containing the (embedded) result of the surrogate model evaluations.

Return type
numpy.ndarray
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surrogateUncertainty(x, grad=False)
Evaluate uncertainty (standard deviation) of all surrogates.

Assumes a Gaussian distribution on simulation outputs.

Warning: Not recommended for external usage!

Parameters
• x (numpy.ndarray) – A 1d numpy.ndarray containing the (embedded) design point to

evaluate.

• grad (bool) – Specifies whether or not to evalaute the gradients.

Returns
(When grad is False) a 1d numpy.ndarray containing the std deviation of the surrogates at x.
(When grad is True) a 2d numpy.ndarray containing the Jacobian of gradients of all surrogates
uncertainties at x.

Return type
numpy.ndarray

evaluateObjectives(x)
Evaluate all objectives using the simulation surrogates as needed.

Warning: Not recommended for external usage!

Parameters
x (numpy.ndarray) – A 1d numpy.ndarray containing the (embedded) design point to eval-
uate.

Returns
A 1d numpy.ndarray containing the result of the evaluation.

Return type
numpy.ndarray

evaluateConstraints(x)
Evaluate the constraints using the simulation surrogates as needed.

Warning: Not recommended for external usage!

Parameters
x (numpy.ndarray) – A 1d numpy.ndarray containing the (embedded) design point to eval-
uate.

Returns
A 1d numpy.ndarray containing the list of constraint violations at x (zero if no violation).

Return type
numpy.ndarray

evaluatePenalty(x, sx=None)
Evaluate the penalized objective using the surrogates as needed.

Warning: Not recommended for external usage!

Parameters
x (numpy.ndarray) – A 1d numpy.ndarray containing the (embedded) design point to eval-
uate.

Returns
A 1d numpy.ndarray containing the result of the evaluation.
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Return type
numpy.ndarray

evaluateGradients(x)
Evaluate the gradient of the penalized objective using surrogates.

Warning: Not recommended for external usage!

Parameters
x (numpy.ndarray) – A 1d numpy.ndarray containing the (embedded) design point to eval-
uate.

Returns
A 1d numpy.ndarray containing the result of the evaluation.

Return type
numpy.ndarray

addData(x, sx)
Update the internal objective database by truly evaluating x.

Parameters
• x (numpy.ndarray or numpy structured array) – Either a numpy structured array

(when using named variables) or a 1D numpy.ndarray containing the value of the design
variable to add to ParMOO’s database. When operating with unnamed variables, the in-
dices were assigned in the order that the design variables were added to the MOOP using
MOOP.addDesign(*args).

• sx (numpy.ndarray or numpy structured array) – Either a numpy structured ar-
ray (when using named variables) or a 1D numpy.ndarray containing the values of
the corresponding simulation outputs for ALL simulations involved in this MOOP. In
named mode, sx[‘s_name’][:] contains the output(s) for sim_func[‘s_name’]. In un-
named mode, simulation indices were assigned in the order that they were added using
MOOP.addSimulation(*args). Then, if each simulation i has m_i outputs (i = 0, 1, . . . ):

– sx[:m_0] contains the output(s) of sim_func[0],

– sx[m_0:m_0 + m_1] contains output(s) of sim_func[1],

– sx[m_0 + m_1:m_0 + m_1 + m_2] contains the output(s) for sim_func[2], etc.

iterate(k, ib=None)
Perform an iteration of ParMOO’s solver and generate candidates.

Generates a batch of suggested candidate points (design points) or (candidate point, simulation name) pairs
and returns to the user for further processing. Note, this method may produce duplicates.

Parameters
• k (int) – The iteration counter (corresponding to MOOP.iteration).

• ib (int, optional) – The index of the acquisition function to optimize and add to the
current batch. Defaults to None, which optimizes all acquisition functions and adds all
resulting candidates to the batch.

Returns
A list of design points (numpy structured or 1D arrays) or tuples (design points, simulation
name) specifying the unfiltered list of candidates that ParMOO recommends for true simula-
tion evaluations. Specifically:
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• Each item or the first entry in tuple is either a numpy structured array (when operating
with named variables) or a 1D numpy.ndarray (in unnamed mode). When operating with
unnamed variables, the indices were assigned in the order that the design variables were
added to the MOOP using MOOP.addDesign(*args).

• If the item is a tuple, then the second entry in the tuple is either the (str) name of the simula-
tion to evaluate (when operating with named variables) or the (int) index of the simulation
to evaluate (when operating in unnamed mode). Note, in unnamed mode, simulation in-
dices were assigned in the order that they were added using MOOP.addSimulation(*args).

Return type
(list)

filterBatch(*args)
Filter a batch produced by ParMOO’s MOOP.iterate method.

Accepts one or more batches of candidate design points, produced by the MOOP.iterate() method and
checks both the batch and ParMOO’s database for redundancies. Any redundant points (up to the design
tolerance) are replaced by model improving points, using each surrogate’s Surrogate.improve() method.

Parameters
• *args (list of numpy.ndarrays or tuples) – The list of

• method. (unfiltered candidates returned by the MOOP.iterate()) –

• points (A list of design) –

• tuples (design points, simulation name) –

• simulation (list of candidates that ParMOO recommends for true) –

• Specifically (evaluations.) –

– Each item or the first entry in tuple is either a numpy structured array (when operating
with named variables) or a 1D numpy.ndarray (in unnamed mode). When operating with
unnamed variables, the indices were assigned in the order that the design variables were
added to the MOOP using MOOP.addDesign(*args).

– If the item is a tuple, then the second entry in the tuple is either the (str) name
of the simulation to evaluate (when operating with named variables) or the (int) in-
dex of the simulation to evaluate (when operating in unnamed mode). Note, in un-
named mode, simulation indices were assigned in the order that they were added using
MOOP.addSimulation(*args).

Returns
A filtered list of ordered pairs (tuples), specifying the (design points, simulation name) that
ParMOO suggests for evaluation. Specifically:

• The first entry in each tuple is either a numpy structured array (when operating with named
variables) or a 1D numpy.ndarray (in unnamed mode). When operating with unnamed
variables, the indices were assigned in the order that the design variables were added to the
MOOP using MOOP.addDesign(*args).

• The second entry is either the (str) name of the simulation to evaluate (when operating
with named variables) or the (int) index of the simulation to evaluate (when operating in
unnamed mode). Note, in unnamed mode, simulation indices were assigned in the order
that they were added using MOOP.addSimulation(*args).

Return type
(list)

2.1. ParMOO API 49



ParMOO User’s Manual, Release 0.3.1

updateAll(k, batch)
Update all surrogates given a batch of freshly evaluated data.

Parameters
• k (int) – The iteration counter (corresponding to MOOP.iteration).

• batch (list) – A list of ordered pairs (tuples), each specifying a design point that was
evaluated in this iteration. For each tuple in the list:

– The first entry in each tuple is either a numpy structured array (when operating with
named variables) or a 1D numpy.ndarray (in unnamed mode). When operating with
unnamed variables, the indices were assigned in the order that the design variables were
added to the MOOP using MOOP.addDesign(*args).

– The second entry is either the (str) name of the simulation to evaluate (when operating
with named variables) or the (int) index of the simulation to evaluate (when operating in
unnamed mode). Note, in unnamed mode, simulation indices were assigned in the order
that they were added using MOOP.addSimulation(*args).

solve(iter_max=None, sim_max=None)
Solve a MOOP using ParMOO.

If desired, be sure to turn on checkpointing before starting the solve, using:

MOOP.setCheckpoint(checkpoint, [checkpoint_data, filename])

and turn on INFO-level logging for verbose output, using:

`` import logging logging.basicConfig(level=logging.INFO,

[format=’%(asctime)s %(levelname)-8s %(message)s’,
datefmt=’%Y-%m-%d %H:%M:%S’])

``
Parameters
iter_max (int) – The max limit for ParMOO’s internal iteration counter. ParMOO keeps
track of how many iterations it has completed internally. This value k specifies the stopping
criteria for ParMOO.

getPF(format='ndarray')
Extract nondominated and efficient sets from internal databases.

Parameters
format (str, optional) – Either ‘ndarray’ (default) or ‘pandas’, in order to produce output
as a numpy structured array or pandas dataframe. Note: format=’pandas’ is only valid for
named inputs.

Returns
A discrete approximation of the Pareto front and efficient set.

If operating with named variables, then this is a 1d numpy structured array whose fields match
the names for design variables, objectives, and constraints (if any).

Otherwise, this is a dict containing the following keys:
• x_vals (numpy.ndarray): A 2d numpy.ndarray containing a list of nondominated points

discretely approximating the Pareto front.

• f_vals (numpy.ndarray): A 2d numpy.ndarray containing the list of corresponding effi-
cient design points.
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• c_vals (numpy.ndarray): A 2d numpy.ndarray containing the list of corresponding con-
straint satisfaction scores, all less than or equal to 0.

getSimulationData(format='ndarray')
Extract all computed simulation outputs from the MOOP’s database.

Parameters
format (str, optional) – Either ‘ndarray’ (default) or ‘pandas’, in order to produce output
as a numpy structured array or pandas dataframe. Note: format=’pandas’ is only valid for
named inputs.

Returns
(dict or list) Either a dictionary or list of dictionaries containing every point where a simulation
was evaluated.

If operating with named variables, then the result is a dict. Each key is the name for a different
simulation, and each value is a 1d numpy structured array whose keys match the names for
each design variables plus an additional ‘out’ key for simulation outputs.

Otherwise, this is a list of s (number of simulations) dicts, each dict containing the following
keys:

• x_vals (numpy.ndarray): A 2d array containing a list of design points that have been eval-
uated for this simulation.

• s_vals (numpy.ndarray): A 1d or 2d array containing the list of corresponding simulation
outputs.

getObjectiveData(format='ndarray')
Extract all computed objective scores from this MOOP’s database.

Parameters
format (str, optional) – Either ‘ndarray’ (default) or ‘pandas’, in order to produce output
as a numpy structured array or pandas dataframe. Note: format=’pandas’ is only valid for
named inputs.

Returns
A database of all designs that have been fully evaluated, and their corresponding objective
scores.

If operating with named variables, then this is a 1d numpy structured array whose fields match
the names for design variables, objectives, and constraints (if any).

Otherwise, this is a dict containing the following keys:
• x_vals (numpy.ndarray): A 2d array containing a list of all fully evaluated design points.

• f_vals (numpy.ndarray): A 2d array containing the list of corresponding objective values.

• c_vals (numpy.ndarray): A 2d array containing the list of corresponding constraint sat-
isfaction scores, all less than or equal to 0.

save(filename='parmoo')
Serialize and save the MOOP object and all of its dependencies.

Parameters
filename (str, optional) – The filepath to serialized checkpointing file(s). Do not in-
clude file extensions, they will be appended automaically. This method may create several
additional save files with this same name, but different file extensions, in order to recursively
save dependency objects (such as surrogate models). Defaults to the value “parmoo” (file-
name will be “parmoo.moop”).
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load(filename='parmoo')
Load a serialized MOOP object and all of its dependencies.

Parameters
filename (str, optional) – The filepath to the serialized checkpointing file(s). Do not
include file extensions, they will be appended automaically. This method may also load from
other save files with the same name, but different file extensions, in order to recursively load
dependency objects (such as surrogate models) as needed. Defaults to the value “parmoo”
(filename will be “parmoo.moop”).

savedata(x, sx, s_name, filename='parmoo')
Save the current simulation database for this MOOP.

Parameters
filename (str, optional) – The filepath to the checkpointing file(s). Do not include file
extensions, they will be appended automaically. Defaults to the value “parmoo” (filename
will be “parmoo.simdb.json”).

Parallel Solvers using the libE_MOOP Class

Solve MOOPs in parallel using ParMOO together with libEnsemble.

from parmoo.extras import libE_MOOP

The libE_MOOP.solve(...) method will distribute simulations across parallel resources using libEnsemble for this
class.

Contains the libE_MOOP class and parmoo_persis_gen function.

Use the libE_MOOP class to define and solve multiobjective optimization problems (MOOPs) with parallel simulation
evaluations. The libE_MOOP class extends the base class parmoo.moop.MOOP for defining and solving MOOPs.

The parmoo_persis_gen function can be used as a generator function in libEnsemble. To do so, create a regular par-
moo.MOOP object and add it to the gen_specs dict, then import and use parmoo_persis_gen as the libE gen func.

class extras.libe.libE_MOOP(opt_func, hyperparams=None)
Class for solving a MOOP using libEnsemble to manage parallelism.

Upon initialization, supply a scalar optimization procedure and dictionary of hyperparameters using the default
constructor:

• moop = libE_MOOP.__init__(ScalarOpt, [hyperparams={}])

Class methods are summarized below.

To define the MOOP, add each design variable, simulation, objective, and constraint (in that order) by using the
following functions:

• libE_MOOP.addDesign(*args)

• libE_MOOP.addSimulation(*args)

• libE_MOOP.addObjective(*args)

• libE_MOOP.addConstraint(*args)

Next, define your solver.

Acquisition functions (used for scalarizing problems/setting targets) are added using:

• libE_MOOP.addAcquisition(*args)
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After creating a MOOP, the following methods may be useful for getting the numpy.dtype of the input/output
arrays:

• libE_MOOP.getDesignType()

• libE_MOOP.getSimulationType()

• libE_MOOP.getObjectiveType()

• libE_MOOP.getConstraintType()

The following methods are used to save/load ParMOO objects from memory:
• libE_MOOP.save([filename="parmoo"])

• libE_MOOP.load([filename="parmoo"])

To turn on checkpointing (recommended), use:
• libE_MOOP.setCheckpoint(checkpoint, [checkpoint_data, filename])

ParMOO’s logging feature is not active for the libE_MOOP class since libEnsemble already provides this feature.

After defining the MOOP and setting up checkpointing and logging, use the following method to solve the MOOP
(using libEnsemble to distribute simulation evaluations):

• ``libE_MOOP.solve(iter_max=None, sim_max=None, wt_max=864000,
profile=False)``

The following methods are used for managing ParMOO’s internal simulation/objective databases. Note that these
databases are maintained separately from libEnsemble’s simulation database:

• libE_MOOP.check_sim_db(x, s_name)

• libE_MOOP.update_sim_db(x, sx, s_name)

• libE_MOOP.evaluateSimulation(x, s_name)

• libE_MOOP.addData(x, sx)

• libE_MOOP.iterate(k, ib)

• libE_MOOP.updateAll(k, batch)

Finally, the following methods are used to retrieve data after the problem has been solved:

• libE_MOOP.getPF(format='ndarray')

• libE_MOOP.getSimulationData(format='ndarray')

• libE_MOOP.getObjectiveData(format='ndarray')

Other private methods from the MOOP class do not work for a libE_MOOP.

__init__(opt_func, hyperparams=None)
Initializer for the libE interface to the MOOP class.

Parameters
• opt_func (SurrogateOptimizer) – A solver for the surrogate problems.

• hyperparams (dict, optional) – A dictionary of hyperparameters for the opt_func,
and any other procedures that will be used.

Returns
A new libE_MOOP object with no design variables,

objectives, or constraints.
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Return type
libE_MOOP

addDesign(*args)
Add a new design variables to the libE_MOOP.

Append new design variables to the problem. Note that every design variable must be added before any
simulations or acquisition functions can be added since the number of design variables is used to infer the
size of simulation databases and acquisition function policies.

Parameters
args (dict) – Each argument is a dictionary representing one design variable. The dictionary
contains information about that design variable, including:

• ’name’ (str, optional): The name of this design if any are left blank, then ALL names are
considered unspecified.

• ’des_type’ (str): The type for this design variable. Currently supported options are:

– ’continuous’

– ’categorical’

• ’lb’ (float): When des_type is ‘continuous’, this specifies the lower bound for the design
variable. This value must be specified, and must be strictly less than ‘ub’ (below) up to the
tolerance (below).

• ’ub’ (float): When des_type is ‘continuous’, this specifies the upper bound for the design
variable. This value must be specified, and must be strictly greater than ‘lb’ (above) up to
the tolerance (below).

• ’tol’ (float): When des_type is ‘continuous’, this specifies the tolerance, i.e., the minimum
spacing along this dimension, before two design values are considered to have equal values
in this dimension. If not specified, the default value is 1.0e-8.

• ’levels’ (int): When des_type is ‘categorical’, this specifies the number of levels for the
variable.

addSimulation(*args)
Add new simulations to the libE_MOOP.

Append new simulation functions to the problem.

Parameters
args (dict) – Each argument is a dictionary representing one simulation function. The
dictionary must contain information about that simulation function, including:

• name (str, optional): The name of this simulation (defaults to “sim” + str(i), where i = 1,
2, 3, . . . for the first, second, third, . . . simulation added to the MOOP).

• m (int): The number of outputs for this simulation.

• sim_func (function): An implementation of the simulation function, mapping from R^n ->
R^m. The interface should match: sim_out = sim_func(x).

• search (GlobalSearch): A GlobalSearch object for performing the initial search over this
simulation’s design space.

• surrogate (SurrogateFunction): A SurrogateFunction object specifying how this simula-
tion’s outputs will be modeled.

• hyperparams (dict): A dictionary of hyperparameters, which will be passed to the surrogate
and search routines. Most notably, ‘search_budget’: (int) can be specified here.
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addObjective(*args)
Add a new objective to the libE_MOOP.

Append a new objective to the problem. The objective must be an algebraic function of the design variables
and simulation outputs. Note that all objectives must be specified before any acquisition functions can be
added.

Parameters
args (dict) – Python dictionary containing objective function information, including:

• ’name’ (str, optional): The name of this objective (defaults to “obj” + str(i), where i = 1, 2,
3, . . . for the first, second, third, . . . simulation added to the MOOP).

• ’obj_func’ (function): An algebraic objective function that maps from R^n X R^m –> R.
Interface should match: cost = obj_func(x, sim_func(x), der=0), where der is an optional
argument specifying whether to take the derivative of the objective function

– 0 – no derivative taken, return f(x, sim_func(x))

– 1 – return derivative wrt x, or

– 2 – return derivative wrt sim(x).

addConstraint(*args)
Add a new constraint to the libE_MOOP.

Append a new constraint to the problem. The constraint can be a linear or nonlinear inequality constraint,
and may depend on the design variables and/or the simulation outputs.

Parameters
*args (dict) – Python dictionary containing constraint function information, including:

• ’name’ (str, optional): The name of this constraint (defaults to “const” + str(i), where i =
1, 2, 3, . . . for the first, second, third, . . . constraint added to the MOOP).

• ’constraint’ (function): An algebraic constraint function that maps from R^n X R^m –> R
and evaluates to zero or a negative number when feasible and positive otherwise. Interface
should match: violation = constraint(x, sim_func(x), der=0), where der is an optional
argument specifying whether to take the derivative of the constraint function

– 0 – no derivative taken, return c(x, sim_func(x))

– 1 – return derivative wrt x, or

– 2 – return derivative wrt sim(x).

Note that any constraint(x, sim_func(x), der=0) <= 0 indicates that x is fea-
seible, while constraint(x, sim_func(x), der=0) > 0 indicates that x is infeasible,
violating the constraint by an amount proportional to the output. It is the user’s responsi-
bility to ensure that after adding all constraints, the feasible region is nonempty and has
nonzero measure in the design space.

addAcquisition(*args)
Add an acquisition function to the libE_MOOP.

Append a new acquisition function to the problem. In each iteration, each acquisition is used to generate
one or more points to evaluate Typically, each acquisition generates one evaluation per simulation function.

Parameters
args (dict) – Python dictionary of acquisition function info, including:

• ’acquisition’ (AcquisitionFunction): An acquisition function that maps from R^o –> R for
scalarizing outputs.
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• ’hyperparams’ (dict): A dictionary of hyperparameters for the acquisition functions. Can
be omitted if no hyperparameters are needed.

setCheckpoint(checkpoint, checkpoint_data=True, filename='parmoo')
Set ParMOO’s checkpointing feature.

Note that for checkpointing to work, all simulation, objective, and constraint functions must be defined in
the global scope. ParMOO also cannot save lambda functions.

Parameters
• checkpoint (bool) – Turn checkpointing on (True) or off (False).

• checkpoint_data (bool, optional) – Also save raw simulation output in a separate
JSON file (True) or rely on ParMOO’s internal simulation database (False). When omitted,
this parameter defaults to False.

• filename (str, optional) – Set the base checkpoint filename/path. The checkpoint
file will have the JSON format and the extension “.moop” appended to the end of filename.
Additional checkpoint files may be created with the same filename but different extensions,
depending on the choice of AcquisitionFunction, SurrogateFunction, and GlobalSearch.
When omitted, this parameter defaults to “parmoo” and is saved inside current working
directory.

getDesignType()

Get the numpy dtype of all design points for this MOOP.

Use this type when allocating a numpy array to store the design points for this MOOP object.

Returns
The numpy dtype of this MOOP’s design points. If no design variables have yet been added,
returns None.

Return type
np.dtype

getSimulationType()

Get the numpy dtypes of the simulation outputs for this MOOP.

Use this type if allocating a numpy array to store the simulation outputs of this MOOP object.

Returns
The numpy dtype of this MOOP’s simulation outputs. If no simulations have been given,
returns None.

Return type
np.dtype

getObjectiveType()

Get the numpy dtype of an objective point for this MOOP.

Use this type if allocating a numpy array to store the objective values of this MOOP object.

Returns
The numpy dtype of this MOOP’s objective points. If no objectives have yet been added,
returns None.

Return type
np.dtype
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getConstraintType()

Get the numpy dtype of the constraint violations for this MOOP.

Use this type if allocating a numpy array to store the constraint scores output of this MOOP object.

Returns
The numpy dtype of this MOOP’s constraint violation output. If no constraints have been
given, returns None.

Return type
np.dtype

check_sim_db(x, s_name)
Check self.sim_db[s_name] to see if the design x was evaluated.

x (np.ndarray or numpy structured array): A 1d numpy.ndarray or numpy
structured array specifying the design point to check for.

s_name (str or int): The name or index of the simulation where
(x, sx) will be added. Note, indices are assigned in the order the simulations were listed during initial-
ization.

Returns
returns None if x is not in self.sim_db[s_name] (up to the design tolerance). Otherwise,
returns the corresponding value of sx.

Return type
None or numpy.ndarray

update_sim_db(x, sx, s_name)
Update sim_db[s_name] by adding a design/simulation output pair.

x (np.ndarray or numpy structured array): A 1d numpy.ndarray or numpy
structured array specifying the design point to add.

sx (np.ndarray): A 1d numpy.ndarray containing the corresponding
simulation output.

s_name (str or int): The name or index of the simulation to whose
database the pair (x, sx) will be added. Note, when using unnamed variables and simulations, the
simulation indices were assigned in the same order that the simulations were added to the MOOP
(using MOOP.addSimulation(*args)) during initialization.

evaluateSimulation(x, s_name)
Evaluate sim_func[s_name] and store the result in the database.

Parameters
• x (numpy.ndarray or numpy structured array) – Either a numpy structured array

(when using named variables) or a 1D numpy.ndarray containing the values of the design
variable to evaluate. Note, when operating with unnamed variables, design variables are
indices were assigned in the order that the design variables were added to the MOOP using
MOOP.addDesign(*args).

• s_name (str, int) – The name or index of the simulation to evaluate. Note, when op-
erating with unnamed variables, simulation indices were assigned in the order that the
simulations were added to the MOOP using MOOP.addSimulation(*args).

Returns
A 1d numpy.ndarray containing the output from the sx = simulation[s_name](x).
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Return type
numpy.ndarray

addData(x, sx)
Update the internal objective database by truly evaluating x.

Parameters
• x (numpy.ndarray or numpy structured array) – Either a numpy structured array

(when using named variables) or a 1D numpy.ndarray containing the value of the design
variable to add to ParMOO’s database. When operating with unnamed variables, the in-
dices were assigned in the order that the design variables were added to the MOOP using
MOOP.addDesign(*args).

• sx (numpy.ndarray or numpy structured array) – Either a numpy structured ar-
ray (when using named variables) or a 1D numpy.ndarray containing the values of
the corresponding simulation outputs for ALL simulations involved in this MOOP. In
named mode, sx[‘s_name’][:] contains the output(s) for sim_func[‘s_name’]. In un-
named mode, simulation indices were assigned in the order that they were added using
MOOP.addSimulation(*args). Then, if each simulation i has m_i outputs (i = 0, 1, . . . ):

– sx[:m_0] contains the output(s) of sim_func[0],

– sx[m_0:m_0 + m_1] contains output(s) of sim_func[1],

– sx[m_0 + m_1:m_0 + m_1 + m_2] contains the output(s) for sim_func[2], etc.

iterate(k, ib=None)
Perform an iteration of ParMOO’s solver and generate candidates.

Generates a batch of suggested candidate points (design points) or (candidate point, simulation name) pairs
and returns to the user for further processing. Note, this method may produce duplicates.

Parameters
• k (int) – The iteration counter (corresponding to MOOP.iteration).

• ib (int, optional) – The index of the acquisition function to optimize and add to the
current batch. Defaults to None, which optimizes all acquisition functions and adds all
resulting candidates to the batch.

Returns
A list of design points (numpy structured or 1D arrays) or tuples (design points, simulation
name) specifying the unfiltered list of candidates that ParMOO recommends for true simula-
tion evaluations. Specifically:

• Each item or the first entry in tuple is either a numpy structured array (when operating
with named variables) or a 1D numpy.ndarray (in unnamed mode). When operating with
unnamed variables, the indices were assigned in the order that the design variables were
added to the MOOP using MOOP.addDesign(*args).

• If the item is a tuple, then the second entry in the tuple is either the (str) name of the simula-
tion to evaluate (when operating with named variables) or the (int) index of the simulation
to evaluate (when operating in unnamed mode). Note, in unnamed mode, simulation in-
dices were assigned in the order that they were added using MOOP.addSimulation(*args).

Return type
(list)
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filterBatch(*xbatch)
Filter a batch produced by ParMOO’s MOOP.iterate method.

Accepts one or more batches of candidate design points, produced by the MOOP.iterate() method and
checks both the batch and ParMOO’s database for redundancies. Any redundant points (up to the design
tolerance) are replaced by model improving points, using each surrogate’s Surrogate.improve() method.

Parameters
• *xbatch (list of numpy.ndarrays or tuples) – The list of

• method. (unfiltered candidates returned by the MOOP.iterate()) –

• points (A list of design) –

• tuples (design points, simulation name) –

• simulation (list of candidates that ParMOO recommends for true) –

• Specifically (evaluations.) –

– Each item or the first entry in tuple is either a numpy structured array (when operating
with named variables) or a 1D numpy.ndarray (in unnamed mode). When operating with
unnamed variables, the indices were assigned in the order that the design variables were
added to the MOOP using MOOP.addDesign(*args).

– If the item is a tuple, then the second entry in the tuple is either the (str) name
of the simulation to evaluate (when operating with named variables) or the (int) in-
dex of the simulation to evaluate (when operating in unnamed mode). Note, in un-
named mode, simulation indices were assigned in the order that they were added using
MOOP.addSimulation(*args).

Returns
A filtered list of ordered pairs (tuples), specifying the (design points, simulation name) that
ParMOO suggests for evaluation. Specifically:

• The first entry in each tuple is either a numpy structured array (when operating with named
variables) or a 1D numpy.ndarray (in unnamed mode). When operating with unnamed
variables, the indices were assigned in the order that the design variables were added to the
MOOP using MOOP.addDesign(*args).

• The second entry is either the (str) name of the simulation to evaluate (when operating
with named variables) or the (int) index of the simulation to evaluate (when operating in
unnamed mode). Note, in unnamed mode, simulation indices were assigned in the order
that they were added using MOOP.addSimulation(*args).

Return type
(list)

updateAll(k, batch)
Update all surrogates given a batch of freshly evaluated data.

Parameters
• k (int) – The iteration counter (corresponding to the value in libE_MOOP.moop.iteration).

• batch (list) – A list of ordered pairs (tuples), each specifying a design point that was
evaluated in this iteration. For each tuple in the list:

– The first entry in each tuple is either a numpy structured array (when operating with
named variables) or a 1D numpy.ndarray (in unnamed mode). When operating with
unnamed variables, the indices were assigned in the order that the design variables were
added to the MOOP using MOOP.addDesign(*args).
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– The second entry is either the (str) name of the simulation to evaluate (when operating
with named variables) or the (int) index of the simulation to evaluate (when operating in
unnamed mode). Note, in unnamed mode, simulation indices were assigned in the order
that they were added using MOOP.addSimulation(*args).

moop_sim(H, persis_info, sim_specs, _)
Evaluates the sim function for a collection of points given in H['x'].

solve(iter_max=None, sim_max=None, wt_max=864000, profile=False)
Solve a MOOP using ParMOO + libEnsemble.

If desired, be sure to turn on checkpointing before starting the solve, using:

MOOP.setCheckpoint(checkpoint, [checkpoint_data, filename])

ParMOO will solve the MOOP and use libEnsemble to distribute simulations over available resources.

Parameters
• iter_max (int) – The max number of ParMOO iterations to be performed by libEnsemble

(default is unlimited).

• sim_max (int) – The max number of simulation to be performed by libEnsemble (default
is unlimited).

• wt_max (int) – The max number of seconds that the simulation may run for (the default
is 864000 secs, i.e., 10 days).

• profile (bool) – Specifies whether to run libE with the profiler.

getPF(format='ndarray')
Extract nondominated and efficient sets from internal databases.

Parameters
format (str, optional) – Either ‘ndarray’ (default) or ‘pandas’, in order to produce output
as a numpy structured array or pandas dataframe. Note: format=’pandas’ is only valid for
named inputs.

Returns
A discrete approximation of the Pareto front and efficient set.

If operating with named variables, then this is a 1d numpy structured array whose fields match
the names for design variables, objectives, and constraints (if any).

Otherwise, this is a dict containing the following keys:
• x_vals (numpy.ndarray): A 2d numpy.ndarray containing a list of nondominated points

discretely approximating the Pareto front.

• f_vals (numpy.ndarray): A 2d numpy.ndarray containing the list of corresponding effi-
cient design points.

• c_vals (numpy.ndarray): A 2d numpy.ndarray containing the list of corresponding con-
straint satisfaction scores, all less than or equal to 0.

getSimulationData(format='ndarray')
Extract all computed simulation outputs from the MOOP’s database.

Parameters
format (str, optional) – Either ‘ndarray’ (default) or ‘pandas’, in order to produce output
as a numpy structured array or pandas dataframe. Note: format=’pandas’ is only valid for
named inputs.
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Returns
(dict or list) Either a dictionary or list of dictionaries containing every point where a simulation
was evaluated.

If operating with named variables, then the result is a dict. Each key is the name for a different
simulation, and each value is a 1d numpy structured array whose keys match the names for
each design variables plus an additional ‘out’ key for simulation outputs.

Otherwise, this is a list of s (number of simulations) dicts, each dict containing the following
keys:

• x_vals (numpy.ndarray): A 2d array containing a list of design points that have been eval-
uated for this simulation.

• s_vals (numpy.ndarray): A 1d or 2d array containing the list of corresponding simulation
outputs.

getObjectiveData(format='ndarray')
Extract all computed objective scores from this MOOP’s database.

Parameters
format (str, optional) – Either ‘ndarray’ (default) or ‘pandas’, in order to produce output
as a numpy structured array or pandas dataframe. Note: format=’pandas’ is only valid for
named inputs.

Returns
A database of all designs that have been fully evaluated, and their corresponding objective
scores.

If operating with named variables, then this is a 1d numpy structured array whose fields match
the names for design variables, objectives, and constraints (if any).

Otherwise, this is a dict containing the following keys:
• x_vals (numpy.ndarray): A 2d array containing a list of all fully evaluated design points.

• f_vals (numpy.ndarray): A 2d array containing the list of corresponding objective values.

• c_vals (numpy.ndarray): A 2d array containing the list of corresponding constraint sat-
isfaction scores, all less than or equal to 0.

save(filename='parmoo')
Serialize and save the MOOP object and all of its dependencies.

Parameters
filename (str, optional) – The filepath to serialized checkpointing file(s). Do not in-
clude file extensions, they will be appended automaically. May create several save files with
extensions of this name, in order to recursively save dependencies objects. Defaults to the
value “parmoo” (filename will be “parmoo.moop”).

load(filename='parmoo')
Load a serialized MOOP object and all of its dependencies.

Parameters
filename (str, optional) – The filepath to the serialized checkpointing file(s). Do not
include file extensions, they will be appended automaically. This method may also load from
other save files with the same name, but different file extensions, in order to recursively load
dependency objects (such as surrogate models) as needed. Defaults to the value “parmoo”
(filename will be “parmoo.moop”).
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savedata(x, sx, s_name, filename='parmoo')
Save the current simulation database for this MOOP.

Parameters
filename (str, optional) – The filepath to the checkpointing file(s). Do not include file
extensions, they will be appended automaically. Defaults to the value “parmoo” (filename
will be “parmoo.simdb.json”).

2.1.2 Acquisition Functions

Add one of these to your MOOP object to generate additional scalarizations per iteration. In general, ParMOO typi-
cally generates one candidate solution per simulation per acquisition function, so the number of acquisition functions
determines the number of candidate simulations evaluated (in parallel) per iteration/batch.

from parmoo import acquisitions

Current options are:

Weighted Sum Methods

Implementations of the weighted-sum scalarization technique.

This module contains implementations of the AcquisitionFunction ABC, which use the weighted-sum technique.

The classes include:
• UniformWeights (sample convex weights from a uniform distribution)

• FixedWeights (uses a fixed scalarization, which can be set upon init)

class acquisitions.weighted_sum.UniformWeights(o, lb, ub, hyperparams)
Randomly generate scalarizing weights.

Generates uniformly distributed scalarization weights, by randomly sampling the probability simplex.

__init__(o, lb, ub, hyperparams)
Constructor for the UniformWeights class.

Parameters
• o (int) – The number of objectives.

• lb (numpy.ndarray) – A 1d array of lower bounds for the design region. The number of
design variables is inferred from the dimension of lb.

• ub (numpy.ndarray) – A 1d array of upper bounds for the design region. The dimension
must match ub.

• hyperparams (dict) – A dictionary of hyperparameters for tuning the acquisition func-
tion.

Returns
A new UniformWeights generator.

Return type
UniformWeights
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useSD()

Query whether this method uses uncertainties.

When False, allows users to shortcut expensive uncertainty computations.

setTarget(data, penalty_func, history)
Randomly generate a new vector of scalarizing weights.

Parameters
• data (dict) – A dictionary specifying the current function evaluation database.

• penalty_func (function) – A function of one (x) or two (x, sx) inputs that evaluates the
(penalized) objectives.

• history (dict) – Another unused argument for this function.

Returns
A 1d array containing the ‘best’ feasible starting point for the scalarized problem (if any
previous evaluations were feasible) or the point in the existing database that is most nearly
feasible.

Return type
numpy.ndarray

scalarize(f_vals, x_vals, s_vals_mean, s_vals_sd)
Scalarize a vector of function values using the current weights.

Parameters
• f_vals (numpy.ndarray) – A 1d array specifying the function values to be scalarized.

• x_vals (np.ndarray) – A 1D array specifying a vector the design point corresponding
to f_vals (unused by this method).

• s_vals_mean (np.ndarray) – A 1D array specifying the expected simulation outputs for
the x value being scalarized (unused by this method).

• s_vals_sd (np.ndarray) – A 1D array specifying the standard deviation for each of the
simulation outputs (unused by this method).

Returns
The scalarized value.

Return type
float

scalarizeGrad(f_vals, g_vals)
Scalarize a Jacobian of gradients using the current weights.

Parameters
• f_vals (numpy.ndarray) – A 1d array specifying the function values for the scalarized

gradient (not used here).

• g_vals (numpy.ndarray) – A 2d array specifying the gradient values to be scalarized.

Returns
The 1d array for the scalarized gradient.

Return type
np.ndarray
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class acquisitions.weighted_sum.FixedWeights(o, lb, ub, hyperparams)
Use fixed scalarizing weights.

Use a fixed scalarization scheme, based on a fixed weighted sum.

__init__(o, lb, ub, hyperparams)
Constructor for the FixedWeights class.

Parameters
• o (int) – The number of objectives.

• lb (numpy.ndarray) – A 1d array of lower bounds for the design region. The number of
design variables is inferred from the dimension of lb.

• ub (numpy.ndarray) – A 1d array of upper bounds for the design region. The dimension
must match ub.

• hyperparams (dict) – A dictionary of hyperparameters for tuning the acquisition func-
tion. May contain the following key:

– ’weights’ (numpy.ndarray): A 1d array of length o that, when present, specifies the
scalarization weights to use. When absent, the default weights are w = [1/o, . . . , 1/o].

Returns
A new FixedWeights generator.

Return type
FixedWeights

useSD()

Querry whether this method uses uncertainties.

When False, allows users to shortcut expensive uncertainty computations.

setTarget(data, penalty_func, history)
Randomly generate a feasible starting point.

Parameters
• data (dict) – A dictionary specifying the current function evaluation database.

• penalty_func (function) – A function of one (x) or two (x, sx) inputs that evaluates the
(penalized) objectives.

• history (dict) – Another unused argument for this function.

Returns
A 1d array containing the ‘best’ feasible starting point for the scalarized problem (if any
previous evaluations were feasible) or the point in the existing database that is most nearly
feasible.

Return type
numpy.ndarray

scalarize(f_vals, x_vals, s_vals_mean, s_vals_sd)
Scalarize a vector of function values using the current weights.

Parameters
• f_vals (numpy.ndarray) – A 1d array specifying the function values to be scalarized.

• x_vals (np.ndarray) – A 1D array specifying a vector the design point corresponding
to f_vals (unused by this method).
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• s_vals_mean (np.ndarray) – A 1D array specifying the expected simulation outputs for
the x value being scalarized (unused by this method).

• s_vals_sd (np.ndarray) – A 1D array specifying the standard deviation for each of the
simulation outputs (unused by this method).

Returns
The scalarized value.

Return type
float

scalarizeGrad(f_vals, g_vals)
Scalarize a Jacobian of gradients using the current weights.

Parameters
• f_vals (numpy.ndarray) – A 1d array specifying the function values for the scalarized

gradient (not used here).

• g_vals (numpy.ndarray) – A 2d array specifying the gradient values to be scalarized.

Returns
The 1d array for the scalarized gradient.

Return type
np.ndarray

Epsilon Constraint Methods

Implementations of the epsilon-constraint-style scalarizations.

This module contains implementations of the AcquisitionFunction ABC, which use the epsilon constraint method.

The classes include:
• RandomConstraint (randomly set a ub for all but 1 objective)

class acquisitions.epsilon_constraint.RandomConstraint(o, lb, ub, hyperparams)
Improve upon a randomly set target point.

Randomly sets a target point inside the current Pareto front. Attempts to improve one of the objective values by
reformulating all other objectives as constraints, upper bounded by their target value.

__init__(o, lb, ub, hyperparams)
Constructor for the RandomConstraint class.

Parameters
• o (int) – The number of objectives.

• lb (numpy.ndarray) – A 1d array of lower bounds for the design region. The number of
design variables is inferred from the dimension of lb.

• ub (numpy.ndarray) – A 1d array of upper bounds for the design region. The dimension
must match ub.

• hyperparams (dict) – A dictionary of hyperparameters for tuning the acquisition func-
tion.

Returns
A new RandomConstraint scalarizer.
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Return type
RandomConstraint

useSD()

Querry whether this method uses uncertainties.

When False, allows users to shortcut expensive uncertainty computations.

setTarget(data, penalty_func, history)
Randomly generate a target based on current nondominated points.

Parameters
• data (dict) – A dictionary specifying the current function evaluation database. It contains

two mandatory fields:

– ’x_vals’ (numpy.ndarray): A 2d array containing the list of design points.

– ’f_vals’ (numpy.ndarray): A 2d array containing the corresponding list of objective val-
ues.

• penalty_func (function) – A function of one (x) or two (x, sx) inputs that evaluates the
(penalized) objectives.

• history (dict) – A persistent dictionary that could be used by the implementation of the
AcquisitionFunction to pass data between iterations; also unused by this scheme.

Returns
A 1d array containing the ‘best’ feasible starting point for the scalarized problem (if any
previous evaluations were feasible) or the point in the existing database that is most nearly
feasible.

Return type
numpy.ndarray

scalarize(f_vals, x_vals, s_vals_mean, s_vals_sd)
Scalarize a vector of function values using the current bounds.

Parameters
• f_vals (numpy.ndarray) – A 1d array specifying the function values to be scalarized.

• x_vals (np.ndarray) – A 1D array specifying a vector the design point corresponding
to f_vals (unused by this method).

• s_vals_mean (np.ndarray) – A 1D array specifying the expected simulation outputs for
the x value being scalarized (unused by this method).

• s_vals_sd (np.ndarray) – A 1D array specifying the standard deviation for each of the
simulation outputs (unused by this method).

Returns
The scalarized value.

Return type
float

scalarizeGrad(f_vals, g_vals)
Scalarize a Jacobian of gradients using the current bounds.

Parameters
• f_vals (numpy.ndarray) – A 1d array specifying the function values for the scalarized

gradient, which are used to penalize exceeding the bounds.
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• g_vals (numpy.ndarray) – A 2d array specifying the gradient values to be scalarized.

Returns
The 1d array for the scalarized gradient.

Return type
np.ndarray

class acquisitions.epsilon_constraint.EI_RandomConstraint(o, lb, ub, hyperparams)
Expected improvement of a randomly set target point.

Randomly sets a target point inside the current Pareto front. Attempts to improve one of the objective values by
reformulating all other objectives as constraints, upper bounded by their target value. Uses surrogate uncertainties
to maximize expected improvement in the target objective subject to constraints.

__init__(o, lb, ub, hyperparams)
Constructor for the RandomConstraint class.

Parameters
• o (int) – The number of objectives.

• lb (numpy.ndarray) – A 1d array of lower bounds for the design region. The number of
design variables is inferred from the dimension of lb.

• ub (numpy.ndarray) – A 1d array of upper bounds for the design region. The dimension
must match ub.

• hyperparams (dict) – A dictionary of hyperparameters for tuning the acquisition func-
tion. Including

– mc_sample_size (int): The number of samples to use for monte carlo integration (de-
faults to 10 * m ** 2).

Returns
A new RandomConstraint scalarizer.

Return type
RandomConstraint

useSD()

Querry whether this method uses uncertainties.

When False, allows users to shortcut expensive uncertainty computations.

setTarget(data, penalty_func, history)
Randomly generate a target based on current nondominated points.

Parameters
• data (dict) – A dictionary specifying the current function evaluation database. It contains

two mandatory fields:

– ’x_vals’ (numpy.ndarray): A 2d array containing the list of design points.

– ’f_vals’ (numpy.ndarray): A 2d array containing the corresponding list of objective val-
ues.

• penalty_func (function) – A function of one (x) or two (x, sx) inputs that evaluates the
(penalized) objectives.

• history (dict) – A persistent dictionary that could be used by the implementation of the
AcquisitionFunction to pass data between iterations; also unused by this scheme.
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Returns
A 1d array containing the ‘best’ feasible starting point for the scalarized problem (if any
previous evaluations were feasible) or the point in the existing database that is most nearly
feasible.

Return type
numpy.ndarray

scalarize(f_vals, x_vals, s_vals_mean, s_vals_sd)
Scalarize a vector of function values using the current bounds.

Parameters
• f_vals (numpy.ndarray) – A 1d array specifying the function values to be scalarized.

• x_vals (np.ndarray) – A 1D array specifying a vector the design point corresponding
to f_vals (unused by this method).

• s_vals_mean (np.ndarray) – A 1D array specifying the expected simulation outputs for
the x value being scalarized (unused by this method).

• s_vals_sd (np.ndarray) – A 1D array specifying the standard deviation for each of the
simulation outputs (unused by this method).

Returns
The scalarized value.

Return type
float

scalarizeGrad(f_vals, g_vals)
Not implemented for this acquisition function, do not use gradient-based methods.

2.1.3 Surrogate Optimizers

When initializing a new MOOP object (see MOOP Classes), you must provide a surrogate optimization problem solver,
which will be used to generate candidate solutions for each iteration.

from parmoo import optimizers

Note that when using a gradient-based technique, you must provide gradient evaluation options for all objective and
constraint functions, by adding code to handle the optional ``der`` input.

def f(x, sx, der=0):
# When using gradient-based solvers, define extra if-cases for
# handling der=1 (calculate df/dx) and der=2 (caldculate df/dsx).

GPS Search Techniques (gradient-free)

Implementations of the SurrogateOptimizer class.

This module contains implementations of the SurrogateOptimizer ABC, which are based on the GPS polling strategy
for direct search.

Note that these strategies are all gradient-free, and therefore does not require objective, constraint, or surrogate gradients
methods to be defined.

The classes include:
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• LocalGPS – Generalized Pattern Search (GPS) algorithm

• GlobalGPS – global random search, followed by GPS

class optimizers.gps_search.LocalGPS(o, lb, ub, hyperparams)
Use Generalized Pattern Search (GPS) to identify local solutions.

Applies GPS to the surrogate problem, in order to identify design points that are locally Pareto optimal, with
respect to the surrogate problem.

__init__(o, lb, ub, hyperparams)
Constructor for the LocalGPS class.

Parameters
• o (int) – The number of objectives.

• lb (numpy.ndarray) – A 1d array of lower bounds for the design region. The number of
design variables is inferred from the dimension of lb.

• ub (numpy.ndarray) – A 1d array of upper bounds for the design region. The dimension
must match ub.

• hyperparams (dict) – A dictionary of hyperparameters for the optimization procedure.
It may contain the following:

– opt_budget (int): The GPS iteration limit (default: 1000).

– opt_restarts (int): Number of multisolve restarts per scalarization (default: n+1).

Returns
A new SurrogateOptimizer object.

Return type
SurrogateOptimizer

solve(x)
Solve the surrogate problem using generalized pattern search (GPS).

Parameters
x (np.ndarray) – A 2d array containing a list of feasible design points used to warm start
the search.

Returns
A 2d numpy.ndarray of potentially efficient design points that were found by the GPS opti-
mizer.

Return type
np.ndarray

class optimizers.gps_search.GlobalGPS(o, lb, ub, hyperparams)
Use randomized search globally followed by GPS locally.

Use RandomSearch to globally search the design space (search phase) followed by LocalGPS to refine the
potentially efficient solutions (poll phase).

__init__(o, lb, ub, hyperparams)
Constructor for the GlobalGPS class.

Parameters
• o (int) – The number of objectives.
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• lb (numpy.ndarray) – A 1d array of lower bounds for the design region. The number of
design variables is inferred from the dimension of lb.

• ub (numpy.ndarray) – A 1d array of upper bounds for the design region. The dimension
must match ub.

• hyperparams (dict) – A dictionary of hyperparameters for the optimization procedure.
It may contain the following:

– opt_budget (int): The function evaluation budget (default: 10,000)

– gps_budget (int): The number of the total opt_budget evaluations that will be used by
GPS (default: half of opt_budget).

Returns
A new SurrogateOptimizer object.

Return type
SurrogateOptimizer

solve(x)
Solve the surrogate problem by using random search followed by GPS.

Parameters
x (np.ndarray) – A 2d array containing a list of feasible design points used to warm start
the search.

Returns
A 2d numpy.ndarray containing a list of potentially efficient design points that were found by
the optimizers.

Return type
np.ndarray

Random Search Techniques (gradient-free)

Implementations of the SurrogateOptimizer class.

This module contains implementations of the SurrogateOptimizer ABC, which are based on randomized search strate-
gies.

Note that these strategies are all gradient-free, and therefore does not require objective, constraint, or surrogate gradients
methods to be defined.

The classes include:
• RandomSearch – search globally by generating random samples

class optimizers.random_search.RandomSearch(o, lb, ub, hyperparams)
Use randomized search to identify potentially efficient designs.

Randomly search the design space and use the surrogate models to predict whether each search point is potentially
Pareto optimal.

__init__(o, lb, ub, hyperparams)
Constructor for the RandomSearch class.

Parameters
• o (int) – The number of objectives.

• lb (numpy.ndarray) – A 1d array of lower bounds for the design region. The number of
design variables is inferred from the dimension of lb.
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• ub (numpy.ndarray) – A 1d array of upper bounds for the design region. The dimension
must match ub.

• hyperparams (dict) – A dictionary of hyperparameters for the optimization procedure.
It may contain the following:

– opt_budget (int): The sample size (default 10,000)

Returns
A new SurrogateOptimizer object.

Return type
SurrogateOptimizer

solve(x)
Solve the surrogate problem using random search.

Parameters
x (np.ndarray) – A 2d array containing a list of feasible design points used to warm start
the search.

Returns
A 2d numpy.ndarray containing a list of potentially efficient design points that were found by
the random search.

Return type
np.ndarray

L-BFGS-B Variations (gradient-based)

Implementations of the SurrogateOptimizer class.

This module contains implementations of the SurrogateOptimizer ABC, which are based on the L-BFGS-B quasi-
Newton algorithm.

Note that all of these methods are gradient based, and therefore require objective, constraint, and surrogate gradient
methods to be defined.

The classes include:
• LBFGSB – Limited-memory bound-constrained BFGS (L-BFGS-B) method

• TR_LBFGSB – L-BFGS-B is applied within a trust region

class optimizers.lbfgsb.LBFGSB(o, lb, ub, hyperparams)
Use L-BFGS-B and gradients to identify local solutions.

Applies L-BFGS-B to the surrogate problem, in order to identify design points that are locally Pareto optimal
with respect to the surrogate problem.

__init__(o, lb, ub, hyperparams)
Constructor for the LBFGSB class.

Parameters
• o (int) – The number of objectives.

• lb (numpy.ndarray) – A 1d array of lower bounds for the design region. The number of
design variables is inferred from the dimension of lb.

• ub (numpy.ndarray) – A 1d array of upper bounds for the design region. The dimension
must match ub.
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• hyperparams (dict) – A dictionary of hyperparameters for the optimization procedure.
It may contain the following:

– opt_budget (int): The evaluation budget per solve (default: 1000).

– opt_restarts (int): Number of multisolve restarts per scalarization (default: n+1).

Returns
A new SurrogateOptimizer object.

Return type
SurrogateOptimizer

solve(x)
Solve the surrogate problem using L-BFGS-B.

Parameters
x (np.ndarray) – A 2d array containing a list of design points used to warm start the search.

Returns
A 2d numpy.ndarray of potentially efficient design points that were found by L-BFGS-B.

Return type
np.ndarray

class optimizers.lbfgsb.TR_LBFGSB(o, lb, ub, hyperparams)
Use L-BFGS-B and gradients to identify solutions within a trust region.

Applies L-BFGS-B to the surrogate problem, in order to identify design points that are locally Pareto optimal
with respect to the surrogate problem.

__init__(o, lb, ub, hyperparams)
Constructor for the TR_LBFGSB class.

Parameters
• o (int) – The number of objectives.

• lb (numpy.ndarray) – A 1d array of lower bounds for the design region. The number of
design variables is inferred from the dimension of lb.

• ub (numpy.ndarray) – A 1d array of upper bounds for the design region. The dimension
must match ub.

• hyperparams (dict) – A dictionary of hyperparameters for the optimization procedure.
It may contain the following:

– opt_budget (int): The evaluation budget per solve (default: 1000).

– opt_restarts (int): Number of multisolve restarts per scalarization (default: 2).

Returns
A new SurrogateOptimizer object.

Return type
SurrogateOptimizer

solve(x)
Solve the surrogate problem using L-BFGS-B.

Parameters
x (np.ndarray) – A 2d array containing a list of design points used to warm start the search.

Returns
A 2d numpy.ndarray of potentially efficient design points that were found by L-BFGS-B.
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Return type
np.ndarray

2.1.4 Search Techniques

A search technique is associated with each simulation when the simulation dictionary is added to the MOOP object.
This technique is used for generating simulation data prior to the first iteration of ParMOO, so that the initial surrogate
models can be fit.

For most search techniques, it is highly recommended that you supply the following optional hyperparameter
keys/values:

• search_budget (int): specifies how many samples will be generated for this simulation.

from parmoo import searches

Available search techniques are as follows:

Latin Hypercube Sampling

Implementations of the GlobalSearch class.

This module contains implementations of the GlobalSearch ABC, which are based on the Latin hypercube design.

The classes include:
• LatinHypercube – Latin hypercube sampling

class searches.latin_hypercube.LatinHypercube(m, lb, ub, hyperparams)
Implementation of a Latin hypercube search.

This GlobalSearch strategy uses a Latin hypercube design to sample in the design space.

__init__(m, lb, ub, hyperparams)
Constructor for the LatinHypercube GlobalSearch class.

Parameters
• m (int) – The number of simulation outputs (unused by this class).

• lb (numpy.ndarray) – A 1d array of lower bounds for the design region. The number of
design variables is inferred from the dimension of lb.

• ub (numpy.ndarray) – A 1d array of upper bounds for the design region. The dimension
must match ub.

• hyperparams (dict) – A dictionary of hyperparameters for the LatinHypercube design.
It may contain:

– search_budget (int): The sim eval budget for the search

Returns
A new LatinHypercube object.

Return type
LatinHypercube

startSearch(lb, ub)
Begin a new Latin hypercube sampling.

Parameters
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• lb (numpy.ndarray) – A 1d array of lower bounds for the design region. The dimension
must match n.

• ub (numpy.ndarray) – A 1d array of upper bounds for the design region. The dimension
must match n.

Returns
A 2d array, containing the list of design points to be evaluated.

Return type
np.ndarray

resumeSearch()

Resume a previous Latin hypercube sampling.

Returns
A 2d array, containing the list of design points to be evaluated.

Return type
np.ndarray

2.1.5 Surrogate Functions

A surrogte model is associated with each simulation when its simulation dictionary is added to the MOOP object. This
technique is used for generatng an approximation to the simulation’s response surface, based on data gathered during
the solve.

from parmoo import surrogates

Available techniques are:

Gaussian Process (RBF) Models

Implementations of the SurrogateFunction class.

This module contains implementations of the SurrogateFunction ABC, which rely on Gaussian basis functions (i.e.,
Gaussian processes).

The classes include:
• GaussRBF – fits Gaussian radial basis functions (RBFs)

• LocalGaussRBF – fits Gaussian radial basis functions (RBFs) locally

class surrogates.gaussian_proc.GaussRBF(m, lb, ub, hyperparams)
A RBF surrogate model, using a Gaussian basis.

This class implements a RBF surrogate with a Gaussian basis, using the SurrogateFunction ABC.

__init__(m, lb, ub, hyperparams)
Constructor for the GaussRBF class.

Parameters
• m (int) – The number of objectives to fit.

• lb (numpy.ndarray) – A 1d array of lower bounds for the design region. The number of
design variables is inferred from the dimension of lb.

74 Chapter 2. API



ParMOO User’s Manual, Release 0.3.1

• ub (numpy.ndarray) – A 1d array of upper bounds for the design region. The dimension
must match ub.

• hyperparams (dict) – A dictionary of hyperparameters for the RBF models, including:

– des_tols (numpy.ndarray, optional): A 1d array whose length matches lb and ub. Each
entry is a number (greater than 0) specifying the design space tolerance for that variable.
By default, des_tols = [1.0e-8, . . . , 1.0e-8].

Returns
A new GaussRBF object.

Return type
GaussRBF

fit(x, f )
Fit a new Gaussian RBF to the given data.

Parameters
• x (numpy.ndarray) – A 2d array containing the list of design points.

• f (numpy.ndarray) – A 2d array containing the corresponding list of objective values.

update(x, f )
Update an existing Gaussian RBF using new data.

Parameters
• x (numpy.ndarray) – A 2d array containing the list of new design points, with which to

update the surrogate models.

• f (numpy.ndarray) – A 2d array containing the corresponding list of objective values.

evaluate(x)
Evaluate the Gaussian RBF at a design point.

Parameters
x (numpy.ndarray) – A 1d array containing the design point at which to the Gaussian RBF
should be evaluated.

Returns
A 1d array containing the predicted objective value at x.

Return type
numpy.ndarray

gradient(x)
Evaluate the gradients of the Gaussian RBF at a design point.

Parameters
x (numpy.ndarray) – A 1d array containing the design point at which the gradient of the
RBF should be evaluated.

Returns
A 2d array containing the Jacobian matrix of the RBF interpolants at x.

Return type
numpy.ndarray

stdDev(x)
Evaluate the standard deviation (uncertainty) of the Gaussian RBF at x.
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Parameters
x (numpy.ndarray) – A 1d array containing the design point at which the standard deviation
should be evaluated.

Returns
A 1d array containing the standard deviation at x.

Return type
numpy.ndarray

stdDevGrad(x)
Evaluate the gradient of the standard deviation of the GaussRBF at x.

Parameters
x (numpy.ndarray) – A 1d array containing the design point at which the gradient of standard
deviation should be evaluated.

Returns
A 2d array containing the Jacobian matrix of the standard deviation at x.

Return type
numpy.ndarray

save(filename)
Save important data from this class so that it can be reloaded.

Parameters
filename (string) – The relative or absolute path to the file where all reload data should
be saved.

load(filename)
Reload important data into this class after a previous save.

Parameters
filename (string) – The relative or absolute path to the file where all reload data has been
saved.

class surrogates.gaussian_proc.LocalGaussRBF(m, lb, ub, hyperparams)
A local RBF surrogate model, using a Gaussian basis.

This class implements a local RBF surrogate with a Gaussian basis, using the SurrogateFunction ABC.

__init__(m, lb, ub, hyperparams)
Constructor for the LocalGaussRBF class.

Parameters
• m (int) – The number of objectives to fit.

• lb (numpy.ndarray) – A 1d array of lower bounds for the design region. The number of
design variables is inferred from the dimension of lb.

• ub (numpy.ndarray) – A 1d array of upper bounds for the design region. The dimension
must match ub.

• hyperparams (dict) – A dictionary of hyperparameters for the RBF models, including:

– des_tols (numpy.ndarray, optional): A 1d array whose length matches lb and ub. Each
entry is a number (greater than 0) specifying the design space tolerance for that variable.
By default, des_tols = [1.0e-8, . . . , 1.0e-8].

Returns
A new LocalGaussRBF object.
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Return type
LocalGaussRBF

fit(x, f )
Fit a new Gaussian RBF to the given data.

Parameters
• x (numpy.ndarray) – A 2d array containing the list of design points.

• f (numpy.ndarray) – A 2d array containing the corresponding list of objective values.

update(x, f )
Update an existing Gaussian RBF using new data.

Parameters
• x (numpy.ndarray) – A 2d array containing the list of new design points, with which to

update the surrogate models.

• f (numpy.ndarray) – A 2d array containing the corresponding list of objective values.

setCenter(center)
Set the new trust region center and refit the local RBF.

Parameters
center (numpy.ndarray) – A 1d array containing the new trust region center.

Returns
The standard deviation used for fitting the surrogates, which should be used as the trust region
radius for a local optimizer.

Return type
float

evaluate(x)
Evaluate the Gaussian RBF at a design point.

Parameters
x (numpy.ndarray) – A 1d array containing the design point at which to the Gaussian RBF
should be evaluated.

Returns
A 1d array containing the predicted objective value at x.

Return type
numpy.ndarray

gradient(x)
Evaluate the gradients of the Gaussian RBF at a design point.

Parameters
x (numpy.ndarray) – A 1d array containing the design point at which the gradient of the
RBF should be evaluated.

Returns
A 2d array containing the Jacobian matrix of the RBF interpolants at x.

Return type
numpy.ndarray

2.1. ParMOO API 77



ParMOO User’s Manual, Release 0.3.1

stdDev(x)
Evaluate the standard deviation (uncertainty) of the Gaussian RBF at x.

Parameters
x (numpy.ndarray) – A 1d array containing the design point at which the standard deviation
should be evaluated.

Returns
A 1d array containing the standard deviation at x.

Return type
numpy.ndarray

stdDevGrad(x)
Evaluate the gradient of the standard deviation of the GaussRBF at x.

Parameters
x (numpy.ndarray) – A 1d array containing the design point at which the gradient of standard
deviation should be evaluated.

Returns
A 2d array containing the Jacobian matrix of the standard deviation at x.

Return type
numpy.ndarray

improve(x, global_improv)
Suggests a design to evaluate to improve the RBF model near x.

Parameters
• x (numpy.ndarray) – A 1d array containing the design point at which the RBF should be

improved.

• global_improv (Boolean) – When True, returns a point for global improvement, ignor-
ing the value of x.

Returns
A 2d array containing the list of design points that should be evaluated to improve the RBF
models.

Return type
numpy.ndarray

save(filename)
Save important data from this class so that it can be reloaded.

Parameters
filename (string) – The relative or absolute path to the file where all reload data should
be saved.

load(filename)
Reload important data into this class after a previous save.

Parameters
filename (string) – The relative or absolute path to the file where all reload data has been
saved.

78 Chapter 2. API



ParMOO User’s Manual, Release 0.3.1

2.1.6 Built-in Problem Libraries

We provide several modules containing common objective and constraint functions, which match the ParMOO interface
and already support gradient-based solvers.

You can import these and use them to help define your MOOP.

from parmoo import objectives
from parmoo import constraints

We also provide templates for defining callable objects, which match ParMOO’s interface.

from parmoo.simulations import sim_func
from parmoo.objectives import obj_func
from parmoo.constraints import const_func

Current options are:

Simulation Templates (ABCs)

Abstract base class (ABC) for simulation function outputs.

Defines an ABC for the callable sim_func class.

class simulations.sim_func.sim_func(des)
Abstract base class (ABC) for simulation function outputs.

Contains 2 methods:
• __init__(des, sim)

• __call__(x)

The __init__ method is already implemented, and is the constructor.

The __call__ method is left to be implemented, and performs the simulation evaluation.

__init__(des)
Constructor for simulation functions.

Parameters
des (numpy.dtype or int) – Either the numpy.dtype of the design variables or the number
of design variables, assumed to all be continuous and unnamed.

abstract __call__(x)
Make sim_func objects callable.

Parameters
x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-
taining the design point to evaluate.

Returns
The output of this simulation for the input x.

Return type
numpy.ndarray
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Objective Templates (ABCs)

Abstract base class (ABC) for objective functions.

Defines an ABC for the callable obj_func class.

class objectives.obj_func.obj_func(des, sim)

Abstract base class (ABC) for objective function outputs.

Contains 2 methods:
• __init__(des, sim)

• __call__(x, sx, der=0)

The __init__ method is already implemented, and is the constructor.

The __call__ method is left to be implemented, and performs the objective evaluation.

__init__(des, sim)

Constructor for objective functions.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• sim (list, tuple, or int) – Either the numpy.dtype of the simultation outputs (list
or tuple) or the number of simulation outputs (assumed to all be continuous, unnamed).

abstract __call__(x, sx, der=0)
Make obj_func objects callable.

Parameters
x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-
taining the design point to evaluate.

Returns
The output of this objective for the input x.

Return type
float

Objective Function Library

This module contains a library of common objective functions, matching ParMOO’s interface.

The common objectives are:
• single_sim_out – min or max a single simulation output

• sos_sim_out – min or max the sum-of-squares for several sim outputs

• sum_sim_out – min or max the (absolute) sum of several sim outputs

class objectives.obj_lib.single_sim_out(des, sim, sim_ind, goal='min')
Class for optimizing a single simulation’s output.

Minimize or maximize a single simulation output. This simulation’s value will be used as an objective.

If minimizing:

def obj_func(x, sx, der=0): return sx[self.sim_ind]
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If maximizing:

def obj_func(x, sx, der=0): return -sx[self.sim_ind]

Also supports derivative usage.

Contains 2 methods:
• __init__(des, sim, sim_ind, goal='min')

• __call__(x, sim, der=0)

The __init__ method inherits from the obj_func ABC.

The __call__ returns sim[self.sim_ind].

__init__(des, sim, sim_ind, goal='min')
Constructor for single_sim_out class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be unnamed.

• sim (np.dtype or int) – Either the numpy.dtype of the simulation outputs or the num-
ber of simulation outputs, assumed to all be unnamed.

• sim_ind (int, str, or tuple) – The index or name of the simulation output to mini-
mize or maximize. Use an integer index when des & sim contain unnamed types. Use a str
name when des & sim contain named types. Use a tuple when sim[sim_ind] has multiple
outputs, where the first entry is the name of the simulation, and the second entry is the
index of that simulation’s output to minimize/maximize.

• goal (str) – Either ‘min’ to minimize or ‘max’ to maximize. Defaults to ‘min’.

__call__(x, sim, der=0)
Define objective evaluation.

Parameters
• x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-

taining the design point to evaluate.

• sim (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named),
containing the corresponding simulation outputs.

• der (int, optional) – Specifies whether to take derivative (and wrt which variables).

– der=1: take derivatives wrt x

– der=2: take derivatives wrt sim

– other: no derivatives

Default value is der=0.

Returns
The output of this objective for the input x (der=0), the gradient with respect to x (der=1), or
the gradient with respect to sim (der=2).

Return type
float or numpy.array
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class objectives.obj_lib.sos_sim_out(des, sim, sim_inds, goal='min')
Class for optimizing the sum-of-squared simulation outputs.

Minimize or maximize the sum-of-squared simulation outputs. This sum-of-squares (SOS) will be used as an
objective.

If minimizing:

def obj_func(x, sx, der=0): return sum([sx[i]**2 for i in sim_inds])

If maximizing:

def obj_func(x, sx, der=0): return -sum([sx[i]**2 for i in sim_inds])

Also supports derivative usage.

Contains 2 methods:
• __init__(des, sim, sim_inds, goal='min')

• __call__(x, sim, der=0)

The __init__ method inherits from the obj_func ABC.

The __call__ evaluate the sum-of-square outputs.

__init__(des, sim, sim_inds, goal='min')
Constructor for sos_sim_out class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be unnamed.

• sim (np.dtype or int) – Either the numpy.dtype of the simulation outputs or the num-
ber of simulation outputs, assumed to all be unnamed.

• sim_inds (list) – The list of indices or names of the simulation outputs to sum over.

• goal (str) – Either ‘min’ to minimize SOS or ‘max’ to maximize SOS. Defaults to ‘min’.

__call__(x, sim, der=0)
Define objective evaluation.

Parameters
• x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-

taining the design point to evaluate.

• sim (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named),
containing the corresponding simulation outputs.

• der (int, optional) – Specifies whether to take derivative (and wrt which variables).

– der=1: take derivatives wrt x

– der=2: take derivatives wrt sim

– other: no derivatives

Default value is der=0.

Returns
The output of this objective for the input x (der=0), the gradient with respect to x (der=1), or
the gradient with respect to sim (der=2).
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Return type
float or numpy.array

class objectives.obj_lib.sum_sim_out(des, sim, sim_inds, goal='min', absolute=False)
Class for optimizing the sum of simulation outputs.

Minimize or maximize the (absolute) sum of simulation output. This sum will be used as an objective.

If minimizing:

def obj_func(x, sx, der=0): return sum([sx[i] for i in sim_inds])

If maximizing:

def obj_func(x, sx, der=0): return -sum([sx[i] for i in sim_inds])

If minimizing absolute sum:

def obj_func(x, sx, der=0): return sum([abs(sx[i]) for i in sim_inds])

If maximizing absolute sum:

def obj_func(x, sx, der=0): return -sum([abs(sx[i]) for i in sim_inds])

Also supports derivative usage.

Contains 2 methods:
• __init__(des, sim, sim_inds, goal='min', absolute=False)

• __call__(x, sim, der=0)

The __init__ method inherits from the obj_func ABC.

The __call__ evaluate the (absolute) sum outputs.

__init__(des, sim, sim_inds, goal='min', absolute=False)
Constructor for sum_sim_out class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be unnamed.

• sim (np.dtype or int) – Either the numpy.dtype of the simulation outputs or the num-
ber of simulation outputs, assumed to all be unnamed.

• sim_inds (list) – The list of indices or names of the simulation outputs to sum over.

• goal (str) – Either ‘min’ to minimize sum or ‘max’ to maximize sum. Defaults to ‘min’.

• absolute (bool) – True to min/max absolute sum, False to min/max raw sum. Defaults
to False.

__call__(x, sim, der=0)
Define objective evaluation.

Parameters
• x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-

taining the design point to evaluate.

• sim (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named),
containing the corresponding simulation outputs.

• der (int, optional) – Specifies whether to take derivative (and wrt which variables).

– der=1: take derivatives wrt x
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– der=2: take derivatives wrt sim

– other: no derivatives

Default value is der=0.

Returns
The output of this objective for the input x (der=0), the gradient with respect to x (der=1), or
the gradient with respect to sim (der=2).

Return type
float or numpy.array

Constraint Function Templates (ABCs)

Abstract base class (ABC) for constraint functions.

Defines an ABC for the callable const_func class.

class constraints.const_func.const_func(des, sim)

Abstract base class (ABC) for constraint functions.

Contains 2 methods:
• __init__(des, sim)

• __call__(x, sx, der=0)

The __init__ method is already implemented, and is the constructor.

The __call__ method is left to be implemented, and performs the constraint evaluation.

__init__(des, sim)

Constructor for constraint functions.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• sim (list, tuple, or int) – Either the numpy.dtype of the simultation outputs (list
or tuple) or the number of simulation outputs (assumed to all be continuous, unnamed).

abstract __call__(x, sim, der=0)
Make const_func objects callable.

Parameters
x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-
taining the design point to evaluate.

Returns
The constraint violation for the input x.

Return type
float
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Constraint Function Library

This module contains a library of common constraint functions, matching ParMOO’s interface.

The common constraints are:
• single_sim_bound – min or max bound on a single simulation output

• sos_sim_bound – min or max bound on the SOS for several sim outputs

• sum_sim_out – min or max bound on the (abs) sum of several sim outputs

class constraints.const_lib.single_sim_bound(des, sim, sim_ind, type='upper', bound=0.0)
Class for bounding a single simulation’s output.

Upper or lower bound a single simulation output.

If upper-bounding:

def const_func(x, sx, der=0): return sx[self.sim_ind] - upper_bound

If lower-bounding:

def obj_func(x, sx, der=0): return lower_bound - sx[self.sim_ind]

Also supports derivative usage.

Contains 2 methods:
• __init__(des, sim, sim_ind, type='min', bound=0.0)

• __call__(x, sim, der=0)

The __init__ method inherits from the const_func ABC.

The __call__ returns the slace (negative when feasible).

__init__(des, sim, sim_ind, type='upper', bound=0.0)
Constructor for single_sim_bound class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be unnamed.

• sim (np.dtype or int) – Either the numpy.dtype of the simulation outputs or the num-
ber of simulation outputs, assumed to all be unnamed.

• sim_ind (int, str, or tuple) – The index or name of the simulation output to mini-
mize or maximize. Use an integer index when des & sim contain unnamed types. Use a str
name when des & sim contain named types. Use a tuple when sim[sim_ind] has multiple
outputs, where the first entry is the name of the simulation, and the second entry is the
index of that simulation’s output to minimize/maximize.

• type (str) – Either ‘lower’ to lower-bound or ‘upper’ to upper-bound. Defaults to ‘upper’.

• bound (float) – The lower/upper bound for this constraint. Defaults to 0.

__call__(x, sim, der=0)
Define simulation evaluation.

Parameters
• x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-

taining the design point to evaluate.
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• sim (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named),
containing the corresponding simulation outputs.

• der (int, optional) – Specifies whether to take derivative (and wrt which variables).

– der=1: take derivatives wrt x

– der=2: take derivatives wrt sim

– other: no derivatives

Default value is der=0.

Returns
The (negative when feasible) slack in this constraint for the input x (der=0), the gradient with
respect to x (der=1), or the gradient with respect to sim (der=2).

Return type
float or numpy.array

class constraints.const_lib.sos_sim_bound(des, sim, sim_inds, type='upper', bound=0.0)
Class for constraining the sum-of-squared simulation outputs.

Upper or lower bound the sum-of-squared simulation outputs.

If upper bounding:

def obj_func(x, sx): return sum([sx[i]**2 for all i]) - upper_bound

If lower bounding:

def obj_func(x, sx): return lower_bound - sum([sx[i]**2 for all i])

Also supports derivative usage.

Contains 2 methods:
• __init__(des, sim, sim_inds, type='upper', bound=0.0)

• __call__(x, sx, der=0)

The __init__ method inherits from the const_func ABC.

The __call__ evaluate the slack (negative values are feasible).

__init__(des, sim, sim_inds, type='upper', bound=0.0)
Constructor for sos_sim_bound class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be unnamed.

• sim (np.dtype or int) – Either the numpy.dtype of the simulation outputs or the num-
ber of simulation outputs, assumed to all be unnamed.

• sim_inds (list) – The list of indices or names of the simulation outputs to sum over.

• type (str) – Either ‘lower’ to lower-bound or ‘upper’ to upper-bound. Defaults to ‘upper’.

• bound (float) – The lower/upper bound for this constraint. Defaults to 0.

__call__(x, sim, der=0)
Define constraint evaluation.

Parameters
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• x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-
taining the design point to evaluate.

• sim (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named),
containing the corresponding simulation outputs.

• der (int, optional) – Specifies whether to take derivative (and wrt which variables).

– der=1: take derivatives wrt x

– der=2: take derivatives wrt sim

– other: no derivatives

Default value is der=0.

Returns
The (negative when feasible) slack in this constraint for the input x (der=0), the gradient with
respect to x (der=1), or the gradient with respect to sim (der=2).

Return type
float or numpy.array

class constraints.const_lib.sum_sim_bound(des, sim, sim_inds, type='upper', bound=0.0,
absolute=False)

Class for bounding the sum of simulation outputs.

Upper or lower bound the (absolute) sum of simulation output.

If upper bounding:

def const_func(x, sx): return sum([sx[i] for all i]) - upper_bound

If lower bounding:

def const_func(x, sx): return lower_bound - sum([sx[i] for all i])

If upper bounding absolute sum:

def const_func(x, sx): return sum([abs(sx[i]) forall i]) - upper_bound

If lower bounding absolute sum:

def const_func(x, sx): return lower_bound - sum([abs(sx[i]) forall i])

Also supports derivative usage.

Contains 2 methods:
• __init__(des, sim, sim_inds, type='upper', bound=0, absolute=False)

• __call__(x, sim, der=0)

The __init__ method inherits from the const_func ABC.

The __call__ evaluate the slack (negative values are feasible).

__init__(des, sim, sim_inds, type='upper', bound=0.0, absolute=False)
Constructor for sum_sim_bound class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be unnamed.

• sim (np.dtype or int) – Either the numpy.dtype of the simulation outputs or the num-
ber of simulation outputs, assumed to all be unnamed.
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• sim_inds (list) – The list of indices or names of the simulation outputs to sum over.

• type (str) – Either ‘lower’ to lower-bound or ‘upper’ to upper-bound. Defaults to ‘upper’.

• bound (float) – The lower/upper bound for this constraint. Defaults to 0.

• absolute (bool) – True to bound absolute sum, False to bound raw sum. Defaults to
False.

__call__(x, sim, der=0)
Define constraint evaluation.

Parameters
• x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-

taining the design point to evaluate.

• sim (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named),
containing the corresponding simulation outputs.

• der (int, optional) – Specifies whether to take derivative (and wrt which variables).

– der=1: take derivatives wrt x

– der=2: take derivatives wrt sim

– other: no derivatives

Default value is der=0.

Returns
The (negative when feasible) slack in this constraint for the input x (der=0), the gradient with
respect to x (der=1), or the gradient with respect to sim (der=2).

Return type
float or numpy.array

2.1.7 The DTLZ Problem Library

To facilitate testing and comparison with other methods, we provide built-in implementations of the DTLZ problems
as ParMOO Simulations and Objectives (with gradients defined).

from parmoo.simulations import dtlz
from parmoo.objectives import dtlz

DTLZ Problems as Simulations

This module contains simulation function implementations of the DTLZ test suite, as described in:

• Deb, Thiele, Laumanns, and Zitzler. “Scalable test problems for evolutionary multiobjective optimization”
in Evolutionary Multiobjective Optimization, Theoretical Advances and Applications, Ch. 6 (pp. 105–145).
Springer-Verlag, London, UK, 2005. Abraham, Jain, and Goldberg (Eds).

When run with default settings, the outputs of dtlz{1-7}_sim have been confirmed against the outputs from the
corresponding problems in pymoo up to 8 decimal places of precision.

• Blank and Deb. “pymoo: Multi-Objective Optimization in Python.” IEEE Access 8 (pp. 89497–89509). 2020.

One drawback of the original DTLZ problems is that their global minima (Pareto points) always corresponded to design
points that satisfy

88 Chapter 2. API



ParMOO User’s Manual, Release 0.3.1

x_i = 0.5, for i = number of objectives, . . . , number of design points

or

x_i = 0, for i = number of objectives, . . . , number of design points.

This was appropriate for testing evolutionary algorithms, but for many deterministic algorithms, these solutions may
represent either the best- or worst-case scenarios.

To make these problems applicable for deterministic algorithms, the solution sets must be configurable offset by a
user-specified amount, as proposed in:

• Chang. Mathematical Software for Multiobjective Optimization Problems. Ph.D. dissertation, Virginia Tech,
Dept. of Computer Science, 2020.

For the problems DTLZ8 and DTLZ9, only objective outputs are given by the simulation function herein. To fully define
the problem, also use one or more of the corresponding constraint classes included in parmoo.constraints.dtlz
[NOT YET IMPLEMENTED].

The full list of simulation functions in this module includes the kernel functions:

• g1_sim

• g2_sim

• g3_sim

• g4_sim

and the 9 DTLZ problems in simulation form, with each simulation output corresponding to an objective:

• dtlz1_sim

• dtlz2_sim

• dtlz3_sim

• dtlz4_sim

• dtlz5_sim

• dtlz6_sim

• dtlz7_sim

• dtlz8_sim

• dtlz9_sim

class simulations.dtlz.g1_sim(des, num_obj=3, offset=0.5)
Class defining 1 of 4 kernel functions used in the DTLZ problem suite.

g1 = 100 ( (n - o + 1) +
sum_{i=o}^n ((x_i - offset)^2 - cos(20pi(x_i - offset))) )

Contains 2 methods:
• __init__(des, num_obj)

• __call__(x)

The __init__ method inherits from the sim_func ABC.

The __call__ method performs an evaluation of the g1 kernel.
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__init__(des, num_obj=3, offset=0.5)
Constructor for g1 class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• num_obj (int, optional) – The number of objectives, which is used to calculate the
value of g1. Note that regardless of the number of objectives, the number of simulation
outputs from g1 is always 1.

• offset (optional, float) – The location of the global minimizers is x_i = offset for i
= number of objectives, . . . , number of design variables. The default value is offset = 0.5.

__call__(x)
Define simulation evaluation.

Parameters
x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-
taining the design point to evaluate.

Returns
The output of this simulation for the input x.

Return type
numpy.ndarray

class simulations.dtlz.g2_sim(des, num_obj=3, offset=0.5)
Class defining 2 of 4 kernel functions used in the DTLZ problem suite.

g2 = (x_o - offset)^2 + . . . + (x_n - offset)^2

Contains 2 methods:
• __init__(des)

• __call__(x)

The __init__ method inherits from the sim_func ABC.

The __call__ method performs an evaluation of the g2 problem.

__init__(des, num_obj=3, offset=0.5)
Constructor for g2 class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• num_obj (int, optional) – The number of objectives, which is used to calculate the
value of g2. Note that regardless of the number of objectives, the number of simulation
outputs from g2 is always 1.

• offset (optional, float) – The location of the global minimizers is x_i = offset for i
= number of objectives, . . . , number of design variables. The default value is offset = 0.5.

__call__(x)
Define simulation evaluation.

Parameters
x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-
taining the design point to evaluate.
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Returns
The output of this simulation for the input x.

Return type
numpy.ndarray

class simulations.dtlz.g3_sim(des, num_obj=3, offset=0.0)
Class defining 3 of 4 kernel functions used in the DTLZ problem suite.

g3 = |x_o - offset|^.1 + . . . + |x_n - offset|^.1

Contains 2 methods:
• __init__(des)

• __call__(x)

The __init__ method inherits from the sim_func ABC.

The __call__ method performs an evaluation of the g3 problem.

__init__(des, num_obj=3, offset=0.0)
Constructor for g3 class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• num_obj (int, optional) – The number of objectives, which is used to calculate the
value of g3. Note that regardless of the number of objectives, the number of simulation
outputs from g3 is always 1.

• offset (optional, float) – The location of the global minimizers is x_i = offset for i
= number of objectives, . . . , number of design variables. The default value is offset = 0.0.

__call__(x)
Define simulation evaluation.

Parameters
x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-
taining the design point to evaluate.

Returns
The output of this simulation for the input x.

Return type
numpy.ndarray

class simulations.dtlz.g4_sim(des, num_obj=3, offset=0.0)
Class defining 4 of 4 kernel functions used in the DTLZ problem suite.

g4 = 1 + (9 * (|x_o - offset| + . . . + |x_n - offset|) / (n + 1 - o))

Contains 2 methods:
• __init__(des)

• __call__(x)

The __init__ method inherits from the sim_func ABC.

The __call__ method performs an evaluation of the g4 problem.
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__init__(des, num_obj=3, offset=0.0)
Constructor for g4 class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• num_obj (int, optional) – The number of objectives, which is used to calculate the
value of g4. Note that regardless of the number of objectives, the number of simulation
outputs from g4 is always 1.

• offset (optional, float) – The location of the global minimizers is x_i = offset for i
= number of objectives, . . . , number of design variables. The default value is offset = 0.0.

__call__(x)
Define simulation evaluation.

Parameters
x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-
taining the design point to evaluate.

Returns
The output of this simulation for the input x.

Return type
numpy.ndarray

class simulations.dtlz.dtlz1_sim(des, num_obj=3, offset=0.5)
Class defining the DTLZ1 problem with offset minimizer.

DTLZ1 has a linear Pareto front, with all nondominated points on the hyperplane F_1 + F_2 + . . . + F_o = 0.5.
DTLZ1 has 11^k - 1 “local” Pareto fronts where k = n - o + 1, and 1 “global” Pareto front.

Contains 2 methods:
• __init__(des)

• __call__(x)

The __init__ method inherits from the sim_func ABC.

The __call__ method performs an evaluation of the DTLZ1 problem.

__init__(des, num_obj=3, offset=0.5)
Constructor for DTLZ1 class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• num_obj (int, optional) – The number of objectives, which is used as the number of
simulation outputs.

• offset (optional, float) – The location of the global minimizers is x_i = offset for i
= number of objectives, . . . , number of design variables. The default value is offset = 0.5.

__call__(x)
Define simulation evaluation.

Parameters
x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-
taining the design point to evaluate.
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Returns
The output of this simulation for the input x.

Return type
numpy.ndarray

class simulations.dtlz.dtlz2_sim(des, num_obj=3, offset=0.5)
Class defining the DTLZ2 problem with offset minimizer.

DTLZ2 has a concave Pareto front, given by the unit sphere in objective space, restricted to the positive orthant.
DTLZ2 has no “local” Pareto fronts, besides the true Pareto front.

Contains 2 methods:
• __init__(des, sim)

• __call__(x)

The __init__ method inherits from the sim_func ABC.

The __call__ method performs an evaluation of the DTLZ2 problem.

__init__(des, num_obj=3, offset=0.5)
Constructor for DTLZ2 class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• num_obj (int, optional) – The number of objectives, which is used as the number of
simulation outputs.

• offset (optional, float) – The location of the global minimizers is x_i = offset for i
= number of objectives, . . . , number of design variables. The default value is offset = 0.5.

__call__(x)
Define simulation evaluation.

Parameters
x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-
taining the design point to evaluate.

Returns
The output of this simulation for the input x.

Return type
numpy.ndarray

class simulations.dtlz.dtlz3_sim(des, num_obj=3, offset=0.5)
Class defining the DTLZ3 problem with offset minimizer.

DTLZ3 has a concave Pareto front, given by the unit sphere in objective space, restricted to the positive orthant.
DTLZ3 has 3^k - 1 “local” Pareto fronts where k = n - o + 1, and 1 “global” Pareto front.

Contains 2 methods:
• __init__(des, sim)

• __call__(x)

The __init__ method inherits from the sim_func ABC.

The __call__ method performs an evaluation of the DTLZ3 problem.
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__init__(des, num_obj=3, offset=0.5)
Constructor for DTLZ3 class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• num_obj (int, optional) – The number of objectives, which is used as the number of
simulation outputs.

• offset (optional, float) – The location of the global minimizers is x_i = offset for i
= number of objectives, . . . , number of design variables. The default value is offset = 0.5.

__call__(x)
Define simulation evaluation.

Parameters
x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-
taining the design point to evaluate.

Returns
The output of this simulation for the input x.

Return type
numpy.ndarray

class simulations.dtlz.dtlz4_sim(des, num_obj=3, offset=0.5, alpha=100.0)
Class defining the DTLZ4 problem with offset minimizer.

DTLZ4 has a concave Pareto front, given by the unit sphere in objective space, restricted to the positive orthant.
DTLZ4 has no “local” Pareto fronts, besides the true Pareto front, but by tuning the optional parameter alpha,
one can adjust the solution density, making it harder for MOO algorithms to produce a uniform distribution of
solutions.

Contains 2 methods:
• __init__(des, sim)

• __call__(x)

The __init__ method inherits from the sim_func ABC.

The __call__ method performs an evaluation of the DTLZ4 problem.

__init__(des, num_obj=3, offset=0.5, alpha=100.0)
Constructor for DTLZ4 class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• num_obj (int, optional) – The number of objectives, which is used as the number of
simulation outputs.

• offset (optional, float) – The location of the global minimizers is x_i = offset for i
= number of objectives, . . . , number of design variables. The default value is offset = 0.5.

• alpha (optional, float or int) – The uniformity parameter used for controlling the
uniformity of the distribution of solutions across the Pareto front. Must be greater than or
equal to 1. A value of 1 results in DTLZ2. Default value is 100.0.
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__call__(x)
Define simulation evaluation.

Parameters
x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-
taining the design point to evaluate.

Returns
The output of this simulation for the input x.

Return type
numpy.ndarray

class simulations.dtlz.dtlz5_sim(des, num_obj=3, offset=0.5)
Class defining the DTLZ5 problem with offset minimizer.

DTLZ5 has a lower-dimensional Pareto front embedded in the objective space, given by an arc of the unit sphere
in the positive orthant. DTLZ5 has no “local” Pareto fronts, besides the true Pareto front.

Contains 2 methods:
• __init__(des, sim)

• __call__(x)

The __init__ method inherits from the sim_func ABC.

The __call__ method performs an evaluation of the DTLZ5 problem.

__init__(des, num_obj=3, offset=0.5)
Constructor for DTLZ5 class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• num_obj (int, optional) – The number of objectives, which is used as the number of
simulation outputs.

• offset (optional, float) – The location of the global minimizers is x_i = offset for i
= number of objectives, . . . , number of design variables. The default value is offset = 0.5.

__call__(x)
Define simulation evaluation.

Parameters
x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-
taining the design point to evaluate.

Returns
The output of this simulation for the input x.

Return type
numpy.ndarray

class simulations.dtlz.dtlz6_sim(des, num_obj=3, offset=0.0)
Class defining the DTLZ6 problem with offset minimizer.

DTLZ6 has a lower-dimensional Pareto front embedded in the objective space, given by an arc of the unit sphere
in the positive orthant. DTLZ6 has no “local” Pareto fronts, but tends to show very little improvement until the
algorithm is very close to its solution set.

Contains 2 methods:
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• __init__(des, sim)

• __call__(x)

The __init__ method inherits from the sim_func ABC.

The __call__ method performs an evaluation of the DTLZ6 problem.

__init__(des, num_obj=3, offset=0.0)
Constructor for DTLZ6 class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• num_obj (int, optional) – The number of objectives, which is used as the number of
simulation outputs.

• offset (optional, float) – The location of the global minimizers is x_i = offset for i
= number of objectives, . . . , number of design variables. The default value is offset = 0.0.

__call__(x)
Define simulation evaluation.

Parameters
x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-
taining the design point to evaluate.

Returns
The output of this simulation for the input x.

Return type
numpy.ndarray

class simulations.dtlz.dtlz7_sim(des, num_obj=3, offset=0.0)
Class defining the DTLZ7 problem with offset minimizer.

DTLZ7 has a discontinuous Pareto front, with solutions on the 2^(o-1) discontinuous nondominated regions of
the surface:

F_m = o - F_1 (1 + sin(3pi F_1)) - . . . - F_{o-1} (1 + sin3pi F_{o-1}).

Contains 2 methods:
• __init__(des, sim)

• __call__(x)

The __init__ method inherits from the sim_func ABC.

The __call__ method performs an evaluation of the DTLZ7 problem.

__init__(des, num_obj=3, offset=0.0)
Constructor for DTLZ7 class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• num_obj (int, optional) – The number of objectives, which is used as the number of
simulation outputs.

• offset (optional, float) – The location of the global minimizers is x_i = offset for i
= number of objectives, . . . , number of design variables. The default value is offset = 0.0.
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__call__(x)
Define simulation evaluation.

Parameters
x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-
taining the design point to evaluate.

Returns
The output of this simulation for the input x.

Return type
numpy.ndarray

class simulations.dtlz.dtlz8_sim(des, num_obj=3, offset=0.0)
Class defining the DTLZ8 problem with offset minimizer.

DTLZ8 is a constrained MOOP, whose Pareto front combines a region of a plane with a line segment. To fully
define DTLZ8, you must also use the parmoo.constraints.dtlz module.

Contains 2 methods:
• __init__(des, sim)

• __call__(x)

The __init__ method inherits from the sim_func ABC.

The __call__ method performs an evaluation of the DTLZ8 problem.

__init__(des, num_obj=3, offset=0.0)
Constructor for DTLZ8 class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• num_obj (int, optional) – The number of objectives, which is used as the number of
simulation outputs.

• offset (optional, float) – The location of the global minimizers is x_i = offset for i
= number of objectives, . . . , number of design variables. The default value is offset = 0.0.

__call__(x)
Define simulation evaluation.

Parameters
x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-
taining the design point to evaluate.

Returns
The output of this simulation for the input x.

Return type
numpy.ndarray

class simulations.dtlz.dtlz9_sim(des, num_obj=3, offset=0.0)
Class defining the DTLZ9 problem with offset minimizer.

DTLZ9 is a constrained MOOP, whose Pareto front is a subregion of the arc traced out by the solution to DTLZ5.
To fully define DTLZ8, you must also use the parmoo.constraints.dtlz module.

Contains 2 methods:
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• __init__(des, sim)

• __call__(x)

The __init__ method inherits from the sim_func ABC.

The __call__ method performs an evaluation of the DTLZ9 problem.

__init__(des, num_obj=3, offset=0.0)
Constructor for DTLZ9 class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• num_obj (int, optional) – The number of objectives, which is used as the number of
simulation outputs.

• offset (optional, float) – The location of the global minimizers is x_i = offset for i
= number of objectives, . . . , number of design variables. The default value is offset = 0.0.

__call__(x)
Define simulation evaluation.

Parameters
x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-
taining the design point to evaluate.

Returns
The output of this simulation for the input x.

Return type
numpy.ndarray

simulations.dtlz.__check_optionals__(num_obj=3, offset=0.5, alpha=100.0)
Check DTLZ optional inputs for illegal values.

Not recommended for external usage.

DTLZ Problems as Objectives

This module contains objective function implementations of the DTLZ test suite, as described in:

Deb, Thiele, Laumanns, and Zitzler. “Scalable test problems for evolutionary multiobjective optimization” in Evolu-
tionary Multiobjective Optimization, Theoretical Advances and Applications, Ch. 6 (pp. 105–145). Springer-Verlag,
London, UK, 2005. Abraham, Jain, and Goldberg (Eds).

Since DTLZ[1-7] depended upon kernel functions (implemented in parmoo.simulations.dtlz), each of these problems
is implemented here as an algebraic, differentiable objective, with the kernel function output as an input. The problems
DTLZ8 and DTLZ9 do not support this modification, so they are omitted.

TODO: DTLZ5, DTLZ6, and DTLZ7 have not yet been added.

To use this module, first import one or more of the following simulation/kernel functions from parmoo.simulations.dtlz:

• g1_sim

• g2_sim

• g3_sim

• g4_sim
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The 7 DTLZ problems included here are:
• dtlz1_obj

• dtlz2_obj

• dtlz3_obj

• dtlz4_obj

class objectives.dtlz.dtlz1_obj(des, sim, obj_ind, num_obj=3)
Class defining the DTLZ1 objectives.

Use this class in combination with the g1_sim() class from the parmoo.simulations.dtlz module

DTLZ1 has a linear Pareto front, with all nondominated points on the hyperplane F_1 + F_2 + . . . + F_o = 0.5.
DTLZ1 has 11^k - 1 “local” Pareto fronts where k = n - m + 1, and 1 “global” Pareto front.

Contains 2 methods:
• __init__(des, sim, obj_ind)

• __call__(x, sim, der=0)

The __init__ method inherits from the obj_func ABC.

The __call__ method performs an evaluation of the DTLZ1 problem.

__init__(des, sim, obj_ind, num_obj=3)
Constructor for DTLZ1 class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• sim (list, tuple, or int) – Either the numpy.dtype of the simulation outputs (list or
tuple) or the number of simulation outputs (assumed to all be unnamed).

• obj_ind (int) – The index of the DTLZ1 objective to return.

• num_obj (int, optional) – The number of objectives for this problem. Note that this
effects the calculation of the objective value, but still only a single objective output is cre-
ated per instance of this class. To add all objectives, create num_obj instances with obj_ind
= 0, . . . , num_obj - 1.

__call__(x, sim, der=0)
Define simulation evaluation.

Parameters
• x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-

taining the design point to evaluate.

• sim (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named),
containing the corresponding simulation outputs.

• der (int, optional) – Specifies whether to take derivative (and wrt which variables).

– der=1: take derivatives wrt x

– der=2: take derivatives wrt sim

– other: no derivatives

Default value is der=0.
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Returns
The output of this simulation for the input x.

Return type
numpy.ndarray

class objectives.dtlz.dtlz2_obj(des, sim, obj_ind, num_obj=3)
Class defining the DTLZ2 objectives.

Use this class in combination with the g2_sim() class from the parmoo.simulations.dtlz module.

DTLZ2 has a concave Pareto front, given by the unit sphere in objective space, restricted to the positive orthant.
DTLZ2 has no “local” Pareto fronts, besides the true Pareto front.

Contains 2 methods:
• __init__(des, sim, obj_ind)

• __call__(x, sim, der=0)

The __init__ method inherits from the obj_func ABC.

The __call__ method performs an evaluation of the DTLZ2 problem.

__init__(des, sim, obj_ind, num_obj=3)
Constructor for DTLZ2 class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• sim (list, tuple, or int) – Either the numpy.dtype of the simulation outputs (list or
tuple) or the number of simulation outputs (assumed to all be unnamed).

• obj_ind (int) – The index of the DTLZ2 objective to return.

• num_obj (int, optional) – The number of objectives for this problem. Note that this
effects the calculation of the objective value, but still only a single objective output is cre-
ated per instance of this class. To add all objectives, create num_obj instances with obj_ind
= 0, . . . , num_obj - 1.

__call__(x, sim, der=0)
Define simulation evaluation.

Parameters
• x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-

taining the design point to evaluate.

• sim (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named),
containing the corresponding simulation outputs.

• der (int, optional) – Specifies whether to take derivative (and wrt which variables).

– der=1: take derivatives wrt x

– der=2: take derivatives wrt sim

– other: no derivatives

Default value is der=0.

Returns
The output of this simulation for the input x.
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Return type
numpy.ndarray

class objectives.dtlz.dtlz3_obj(des, sim, obj_ind, num_obj=3)
Class defining the DTLZ3 objectives.

Use this class in combination with the g1_sim() class from the parmoo.simulations.dtlz module.

DTLZ3 has a concave Pareto front, given by the unit sphere in objective space, restricted to the positive orthant.
DTLZ3 has 3^k - 1 “local” Pareto fronts where k = n - o + 1, and 1 “global” Pareto front.

Contains 2 methods:
• __init__(des, sim, obj_ind)

• __call__(x, sim, der=0)

The __init__ method inherits from the obj_func ABC.

The __call__ method performs an evaluation of the DTLZ3 problem.

__init__(des, sim, obj_ind, num_obj=3)
Constructor for DTLZ3 class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• sim (list, tuple, or int) – Either the numpy.dtype of the simulation outputs (list or
tuple) or the number of simulation outputs (assumed to all be unnamed).

• obj_ind (int) – The index of the DTLZ3 objective to return.

• num_obj (int, optional) – The number of objectives for this problem. Note that this
effects the calculation of the objective value, but still only a single objective output is cre-
ated per instance of this class. To add all objectives, create num_obj instances with obj_ind
= 0, . . . , num_obj - 1.

__call__(x, sim, der=0)
Define simulation evaluation.

Parameters
• x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-

taining the design point to evaluate.

• sim (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named),
containing the corresponding simulation outputs.

• der (int, optional) – Specifies whether to take derivative (and wrt which variables).

– der=1: take derivatives wrt x

– der=2: take derivatives wrt sim

– other: no derivatives

Default value is der=0.

Returns
The output of this simulation for the input x.

Return type
numpy.ndarray
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class objectives.dtlz.dtlz4_obj(des, sim, obj_ind, num_obj=3, alpha=100.0)
Class defining the DTLZ4 objectives.

Use this class in combination with the g2_sim() class from the parmoo.simulations.dtlz module.

DTLZ4 has a concave Pareto front, given by the unit sphere in objective space, restricted to the positive orthant.
DTLZ4 has no “local” Pareto fronts, besides the true Pareto front, but by tuning the optional parameter alpha,
one can adjust the solution density, making it harder for MOO algorithms to produce a uniform distribution of
solutions.

Contains 2 methods:
• __init__(des, sim, obj_ind)

• __call__(x, sim, der=0)

The __init__ method inherits from the obj_func ABC.

The __call__ method performs an evaluation of the DTLZ4 problem.

__init__(des, sim, obj_ind, num_obj=3, alpha=100.0)
Constructor for DTLZ4 class.

Parameters
• des (np.dtype or int) – Either the numpy.dtype of the design variables or the number

of design variables, assumed to all be continuous and unnamed.

• sim (list, tuple, or int) – Either the numpy.dtype of the simulation outputs (list or
tuple) or the number of simulation outputs (assumed to all be unnamed).

• obj_ind (int) – The index of the DTLZ4 objective to return.

• num_obj (int, optional) – The number of objectives for this problem. Note that this
effects the calculation of the objective value, but still only a single objective output is cre-
ated per instance of this class. To add all objectives, create num_obj instances with obj_ind
= 0, . . . , num_obj - 1.

• alpha (optional, float or int) – The uniformity parameter used for controlling the
uniformity of the distribution of solutions across the Pareto front. Must be greater than or
equal to 1. A value of 1 results in DTLZ2. Default value is 100.0.

__call__(x, sim, der=0)
Define simulation evaluation.

Parameters
• x (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named), con-

taining the design point to evaluate.

• sim (numpy.array) – A numpy.ndarray (unnamed) or numpy structured array (named),
containing the corresponding simulation outputs.

• der (int, optional) – Specifies whether to take derivative (and wrt which variables).

– der=1: take derivatives wrt x

– der=2: take derivatives wrt sim

– other: no derivatives

Default value is der=0.

Returns
The output of this simulation for the input x.
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Return type
numpy.ndarray

2.1.8 Extra Developer Tools

These are miscellaneous additional tools and definitions, which may be useful for developers.

ParMOO Solver and Component Definitions

To implement a new acquisition function, solver, surrogate, or search technique for ParMOO, you must match its
interface. An interface definition for each of these methods is provided in the structs module in the corresponding
Abstract Base Class (ABC).

from parmoo import structs

When implementing one of these techniques, you should extend the corresponding ABC, defined below.

Abstract base classes (ABCs) for ParMOO project.

This module contains several abstract base classes that can be used to create a flexible framework for surrogate based
multiobjective optimization.

The classes include:
• AcquisitionFunction

• GlobalSearch

• SurrogateFunction

• SurrogateOptimizer

AcquisitionFunction

class structs.AcquisitionFunction(o, lb, ub, hyperparams)
ABC describing acquisition functions.

This class contains the following methods:
• useSD()

• setTarget(data, constraint_func, history)

• scalarize(f_vals)

• scalarizeGrad(f_vals, g_vals)

• save(filename)

• load(filename)

abstract __init__(o, lb, ub, hyperparams)
Constructor for the AcquisitionFunction class.

Parameters
• o (int) – The number of objectives.

• lb (numpy.ndarray) – A 1d array of lower bounds for the design space.

• ub (numpy.ndarray) – A 1d array of upper bounds for the design space.
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• hyperparams (dict) – A dictionary of hyperparameters that are passed to the acquisition
function.

Returns
A new AcquisitionFunction object.

Return type
AcquisitionFunction

abstract setTarget(data, penalty_func, history)
Set a new target value or region for the AcquisitionFunction.

Parameters
• data (dict) – A dictionary specifying the current function evaluation database. It contains

two mandatory fields:

– ’x_vals’ (numpy.ndarray): A 2d array containing the list of design points.

– ’f_vals’ (numpy.ndarray): A 2d array containing the corresponding list of objective val-
ues.

• available (If gradients are) –

field:
– ’g_vals’ (numpy.ndarray): A 3d array containing the Jacobian of the objective function

at each point in ‘x_vals’.

• additional (data may contain one) –

field:
– ’g_vals’ (numpy.ndarray): A 3d array containing the Jacobian of the objective function

at each point in ‘x_vals’.

• penalty_func (function) – A function of one (x) or two (x, sx) inputs that evaluates all
(penalized) objective scores.

• history (dict) – A persistent dictionary that could be used by the implementation of the
AcquisitionFunction to pass data between iterations.

Returns
A 1d array containing a feasible starting point for the scalarized problem.

Return type
numpy.ndarray

useSD()

Query whether this method uses uncertainties.

When False, allows users to shortcut expensive uncertainty computations.

Default implementation returns True, requiring full uncertainty computation for applicable models.

abstract scalarize(f_vals, x_vals, s_vals_mean, s_vals_sd)
Scalarize a vector-valued function using the AcquisitionFunction.

Parameters
• f_vals (np.ndarray) – A 1D array specifying a vector of function values to be

scalarized.

• x_vals (np.ndarray) – A 1D array specifying a vector the design point correspond-
ing to f_vals.
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• s_vals_mean (np.ndarray) – A 1D array specifying the expected simulation outputs
for the x value being scalarized.

• s_vals_sd (np.ndarray) – A 1D array specifying the standard deviation for each of
the simulation outputs.

Returns
The scalarized value.

Return type
float

scalarizeGrad(f_vals, g_vals)
Scalarize a Jacobian of gradients using the current weights.

Parameters
• f_vals (numpy.ndarray) – A 1d array specifying the function values for the scalar-

ized gradient.

• g_vals (numpy.ndarray) – A 2d array specifying the gradient values to be scalar-
ized.

Returns
The 1d array for the scalarized gradient.

Return type
np.ndarray

save(filename)
Save important data from this class so that it can be reloaded.

Note: If this function is left unimplemented, ParMOO will reinitialize a fresh instance after a save/load. If
this is the desired behavior, then this method and the load method need not be implemented.

Parameters
filename (string) – The relative or absolute path to the file where all reload data should
be saved.

load(filename)
Reload important data into this class after a previous save.

Note: If this function is left unimplemented, ParMOO will reinitialize a fresh instance after a save/load. If
this is the desired behavior, then this method and the save method need not be implemented.

Parameters
filename (string) – The relative or absolute path to the file where all reload data has
been saved.

GlobalSearch

class structs.GlobalSearch(o, lb, ub, hyperparams)
ABC describing global search techniques.

This class contains the following methods.
• startSearch(lb, ub)

• resumeSearch()

• save(filename)
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• load(filename)

abstract __init__(o, lb, ub, hyperparams)
Constructor for the GlobalSearch class.

Parameters
• o (int) – The number of objectives.

• lb (numpy.ndarray) – A 1d array of lower bounds for the design space.

• ub (numpy.ndarray) – A 1d array of upper bounds for the design space.

• hyperparams (dict) – A dictionary of hyperparameters for the global search. It may
contain any inputs specific to the search algorithm.

Returns
A new GlobalSearch object.

Return type
GlobalSearch

abstract startSearch(lb, ub)
Begin a new global search.

Parameters
• lb (numpy.ndarray) – A 1d array of lower bounds for the design region. The dimen-

sion must match n.

• ub (numpy.ndarray) – A 1d array of upper bounds for the design region. The dimen-
sion must match n.

Returns
A 2d array, containing the list of design points to be evaluated.

Return type
numpy.ndarray

resumeSearch()

Resume a global search.

Returns
A 2d array, containing the list of design points to be evaluated.

Return type
numpy.ndarray

save(filename)
Save important data from this class so that it can be reloaded.

Note: If this function is left unimplemented, ParMOO will reinitialize a fresh instance after a save/load. If
this is the desired behavior, then this method and the load method need not be implemented.

Parameters
filename (string) – The relative or absolute path to the file where all reload data should
be saved.

load(filename)
Reload important data into this class after a previous save.

Note: If this function is left unimplemented, ParMOO will reinitialize a fresh instance after a save/load. If
this is the desired behavior, then this method and the save method need not be implemented.
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Parameters
filename (string) – The relative or absolute path to the file where all reload data has
been saved.

SurrogateFunction

class structs.SurrogateFunction(m, lb, ub, hyperparams)
ABC describing surrogate functions.

This class contains the following methods.
• fit(x, f)

• update(x, f)

• setCenter(x) (default implementation provided)

• evaluate(x)

• gradient(x)

• stdDev(x)

• stdDevGrad(x)

• improve(x, global_improv) (default implementation provided)

• save(filename)

• load(filename)

abstract __init__(m, lb, ub, hyperparams)
Constructor for the SurrogateFunction class.

Parameters
• m (int) – The number of objectives to fit.

• lb (numpy.ndarray) – A 1d array of lower bounds for the design region. The number
of design variables is inferred from the dimension of lb.

• ub (numpy.ndarray) – A 1d array of upper bounds for the design region. The dimen-
sion must match ub.

• hyperparams (dict) – A dictionary of hyperparameters to be used by the surrogate
models, including:

– des_tols (numpy.ndarray, optional): A 1d array whose length matches lb and ub.
Each entry is a number (greater than 0) specifying the design space tolerance for
that variable. By default, des_tols = [1.0e-8, . . . , 1.0e-8].

Returns
A new SurrogateFunction object.

Return type
SurrogateFunction

abstract fit(x, f )
Fit a new surrogate to the given data.

Parameters
• x (numpy.ndarray) – A 2d array containing the list of design points.
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• f (numpy.ndarray) – A 2d array containing the corresponding list of objective val-
ues.

abstract update(x, f )
Update an existing surrogate model using new data.

Parameters
• x (numpy.ndarray) – A 2d array containing the list of new design points, with which

to update the surrogate models.

• f (numpy.ndarray) – A 2d array containing the corresponding list of objective val-
ues.

setCenter(center)
Set the center for the fit, if this is a local method.

Default implementation returns the diameter of the design space, resulting in a nonbinding trust region.

Parameters
center (numpy.ndarray) – A 1d array containing the center for this local fit.

abstract evaluate(x)
Evaluate the surrogate at a design point.

Parameters
x (numpy.ndarray) – A 1d array containing the design point at which to the surrogate
should be evaluated.

Returns
A 1d array containing the predicted objective value at x.

Return type
numpy.ndarray

gradient(x)
Evaluate the gradient of the surrogate at a design point.

Note: this method need not be implemented when using a derivative free SurrogateOptimization solver.

Parameters
x (numpy.ndarray) – A 1d array containing the design point at which the gradient of the
surrogate should be evaluated.

Returns
A 2d array containing the Jacobian matrix of the surrogate at x.

Return type
numpy.ndarray

stdDev(x)
Evaluate the standard deviation (uncertainty) of the surrogate at x.

Note: this method need not be implemented when the acquisition function does not use the model uncer-
tainty.

Parameters
x (numpy.ndarray) – A 1d array containing the design point at which the standard devi-
ation should be evaluated.

Returns
A 1d array containing the standard deviation at x.
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Return type
numpy.ndarray

stdDevGrad(x)
Evaluate the gradient of the standard deviation at x.

Note: this method need not be implemented when the acquisition function does not use both the model
uncertainty and gradient.

Parameters
x (numpy.ndarray) – A 1d array containing the design point at which the gradient of
standard deviation should be evaluated.

Returns
A 2d array containing the Jacobian matrix of the standard deviation at x.

Return type
numpy.ndarray

improve(x, global_improv)
Suggests a design to evaluate to improve the surrogate near x.

A default implementation is given based on random sampling. Re-implement the improve method to
overwright the default policy.

Parameters
• x (numpy.ndarray) – A 1d array containing the design point at which the surrogate

should be improved.

• global_improv (Boolean) – When True, returns a point for global improvement,
ignoring the value of x.

Returns
A 2d array containing the list of design points that should be evaluated to improve the
surrogate.

Return type
numpy.ndarray

save(filename)
Save important data from this class so that it can be reloaded.

Note: If this function is left unimplemented, ParMOO will reinitialize a fresh instance after a save/load. If
this is the desired behavior, then this method and the load method need not be implemented.

Parameters
filename (string) – The relative or absolute path to the file where all reload data should
be saved.

load(filename)
Reload important data into this class after a previous save.

Note: If this function is left unimplemented, ParMOO will reinitialize a fresh instance after a save/load. If
this is the desired behavior, then this method and the save method need not be implemented.

Parameters
filename (string) – The relative or absolute path to the file where all reload data has
been saved.
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SurrogateOptimizer

class structs.SurrogateOptimizer(o, lb, ub, hyperparams)
ABC describing surrogate optimization techniques.

This class contains the following methods.
• setObjective(obj_func) (default implementation provided)

• setSimulation(sim_func, sd_func) (default implementation provided)

• setConstraints(constraint_func) (default implementation provided)

• setPenalty(penaltyFunc, gradFunc) (default implementation provided)

• setReset(reset) (default implementation provided)

• addAcquisition(*args) (default implementation provided)

• solve(x)

• save(filename)

• load(filename)

abstract __init__(o, lb, ub, hyperparams)
Constructor for the SurrogateOptimizer class.

Parameters
• o (int) – The number of objectives.

• lb (numpy.ndarray) – A 1d array of lower bounds for the design space.

• ub (numpy.ndarray) – A 1d array of upper bounds for the design space.

• hyperparams (dict) – A dictionary of hyperparameters for the optimization proce-
dure.

Returns
A new SurrogateOptimizer object.

Return type
SurrogateOptimizer

setObjective(obj_func)
Add a vector-valued objective function that will be solved.

Parameters
obj_func (function) – A vector-valued function that can be evaluated to solve the sur-
rogate optimization problem.

setSimulation(sim_func, sd_func=None)
Add a vector-valued simulation function, used to calculate objs.

Parameters
• sim_func (function) – A vector-valued function that can be evaluated to determine

the surrogate-predicted simulation outputs.

• sd_func (function) – A vector-valued function that can be evaluated to determine
the standard deviations of the surrogate predictions.
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setPenalty(penalty_func, grad_func)
Add a matrix-valued gradient function for obj_func.

Parameters
• penalty_func (function) – A vector-valued penalized objective that incorporates

a penalty for violating constraints.

• grad_func (function) – A matrix-valued function that can be evaluated to obtain
the Jacobian matrix for obj_func.

setConstraints(constraint_func)
Add a constraint function that will be satisfied.

Parameters
constraint_func (function) – A vector-valued function from the design space whose
components correspond to constraint violations. If the problem is unconstrained, a function
that returns zeros could be provided.

setReset(reset)
Add a reset function for resetting surrogate updates.

Parameters
reset (function) – A function with one input, which will be called prior to solving the
surrogate optimization problem with each acquisition function.

addAcquisition(*args)
Add an acquisition function for the surrogate optimizer.

Parameters
*args (AcquisitionFunction) – Acquisition functions that are used to scalarize the list
of objectives in order to solve the surrogate optimization problem.

abstract solve(x)
Solve the surrogate problem.

Parameters
x (numpy.ndarray) – A 2d array containing a list of feasible design points used to warm
start the search.

Returns
A 2d numpy.ndarray of potentially efficient design points that were found by the surrogate
optimizer.

Return type
float

save(filename)
Save important data from this class so that it can be reloaded.

Note: If this function is left unimplemented, ParMOO will reinitialize a fresh instance after a save/load. If
this is the desired behavior, then this method and the load method need not be implemented.

Parameters
filename (string) – The relative or absolute path to the file where all reload data should
be saved.

load(filename)
Reload important data into this class after a previous save.

Note: If this function is left unimplemented, ParMOO will reinitialize a fresh instance after a save/load. If
this is the desired behavior, then this method and the save method need not be implemented.
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Parameters
filename (string) – The relative or absolute path to the file where all reload data has
been saved.

Utilities

This module contains additional utilities, which may be useful for some developers.

from parmoo import util

This module contains several auxiliary functions used throughout ParMOO.

These functions may also be of external interest. They are:
• xerror(o, lb, ub, hyperparams)

• check_sims(n, arg1, arg2, . . . )

• lex_leq(a, b)

• updatePF(data, nondom)

• unpack(x, dtype)

util.xerror(o=1, lb=None, ub=None, hyperparams=None)
Typecheck the input arguments for a class interface.

Parameters
• o (int) – The number of objectives should be an int greater than or equal to 1.

• lb (np.ndarray) – The lower bounds should be a 1d array.

• ub (np.ndarray) – The upper bounds should be a 1d array with the same length as lb,
and must satisfy lb[:] < ub[:].

• hyperparams (dict) – The hyperparameters must be supplied in a dictionary.

util.check_sims(n, *args)
Check simulation dictionaries for bad input.

Parameters
• n (int) – The dimension of the design space. Used for confirming any simulation

databases provided in args.

• *args (dict) – An unpacked array of dictionaries, each specifying one of the simulations.
The following keys are used:

– name (String, optional): The name of this simulation (defaults to “sim” + str(i), where
i = 1, 2, 3, . . . for the first, second, third, . . . simulation added to the MOOP).

– m (int): The number of outputs for this simulation.

– sim_func (function): An implementation of the simulation function, mapping from
R^n -> R^m. The interface should match: sim_out = sim_func(x, der=False), where
der is an optional argument specifying whether to take the derivative of the simula-
tion. Unless otherwise specified by your solver, der is always omitted by ParMOO’s
internal structures, and need not be implemented.

– search (GlobalSearch): A GlobalSearch object for performing the initial search over
this simulation’s design space.
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– surrogate (SurrogateFunction): A SurrogateFunction object specifying how this sim-
ulation’s outputs will be modeled.

– des_tol (float): The tolerance for this simulation’s design space; a new design point
that is closer than des_tol to a point that is already in this simulation’s database will
not be reevaluated.

– hyperparams (dict): A dictionary of hyperparameters, which will be passed to the
surrogate and search routines. Most notably, search_budget (int) can be specified
here.

– sim_db (dict, optional): A dictionary of previous simulation evaluations. When
present, contains:

∗ x_vals (np.ndarray): A 2d array of pre-evaluated design points.

∗ s_vals (np.ndarray): A 2d array of corresponding simulation outputs.

∗ g_vals (np.ndarray): A 3d array of corresponding Jacobian values. This value is
only needed if the provided SurrogateFunction uses gradients.

util.lex_leq(a, b)
Lexicographically compare two vectors from back to front.

Check whether the vector a is lexicographically less than or equal to b, starting from the last element and working
back to the first element.

Parameters
• a (numpy.ndarray) – The first vector to compare.

• b (numpy.ndarray) – The second vector to compare.

Returns
Whether a <= b in the lexicographical sense.

Return type
Boolean

util.updatePF(data, nondom)

Update the Pareto front and efficient set by resorting.

Returns
A dictionary containing a discrete approximation of the Pareto front and efficient set.

• f_vals (numpy.ndarray): A list of nondominated points discretely approximating the
Pareto front.

• x_vals (numpy.ndarray): A list of corresponding efficient design points.

• c_vals (numpy.ndarray): A list of corresponding constraint satisfaction scores, all less
than or equal to 0.

Return type
dict

util.unpack(x, dtype)
Unpack an input vector of given dtype into a numpy.ndarray.

Parameters
• x (numpy.ndarray or numpy structured array) – The input vector, which needs

to be unpacked.
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• dtype (numpy.dtype) – The dtype of the input x.

Returns
x unpacked into a 1-dimensional numpy.ndarray.

Return type
numpy.ndarray

2.1.9 The Interactive Visualization (viz) Library

Easily generate a locally-hosted GUI for interactively visualizing your MOOP results.

The public interface can be accessed by importing the viz module, which contains three functions for creating interactive
visualizations of the approximate Pareto front and objective data; these visualizations run on the browser in a Dash app.
There is a known issue when using parmoo.viz in the Chrome browser, Firefox or Safari is recommended.

import parmoo.viz

Public Plotting Functions Running in Python Plotly and Dash

A plotting library for interactive visualization of MOOP objects.

To generate a plot, generate create a MOOP object and use it to solve a problem. Then call one of the following function,
passing the MOOP object as the first argument:

• viz.scatter(moop)

• viz.parallel_coordinates(moop)

• viz.radar(moop)

Please take note of the following:

• Via the interactivity features, all of the arguments except for the moop field can be adjusted interactively through
the pop-up GUI. The plot type can also be adjusted from the dropdown menu while running the GUI..

• The viz tool hosts a Dash app through the local port http://127.0.0.1:8050/. This means that only one
visualization can be hosted at a time. Also, killing the Dash app will end the interactivity in the browser, although
a static plot may remain in your broswer window.

• Finally, note that there is a known issue when using the Chrome browser. The Firefox or Safari browsers are
recommended.

To interact with the plots:

1. To multi-select in scatterplots and radar plots, hold down SHIFT while making additional selections.

2. To remove all selections from a scatterplot and radar plot, select without holding down the SHIFT key or double
click.

3. To select in parallel coordinates plots, click along an axis and then drag the cursor elsewhere along the same axis.
The highlighted part of the axis is the area that is selected. There is no need to hold down SHIFT when making
multiple selections in parallel coordinates plots.

4. To remove a parallel coordinates plot selection, click on the highlighted selection bar you wish to delete.

5. To reset plot interactions made through the toolbar in the top right of a graph (not interactions made through
buttons, dropdowns, toggles, or input boxes), double click on the plot. This will undo selections, zoom, pan, etc.

The three basic plot options are detailed below.
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viz.plot.scatter(moop, db='pf', output='dash', points='constraint_satisfying', height='auto', width='auto',
font='auto', fontsize='auto', background_color='auto', screenshot='svg',
image_export_format='svg', data_export_format='csv', dev_mode=False, pop_up=True,
port='http://127.0.0.1:8050/')

Create a scatter plot matrix to visualize the results of a MOOP.

Parameters
• moop (MOOP) – The MOOP results that you would like to visualize.

• db (str) – Either ‘pf’ to plot just the Pareto front, or ‘obj’ to plot the complete objective
database. Defaults to ‘pf’.

• output (str) – Either ‘dash’ to generate an interactive plot running in your browser using
the dash app, or anything else to save a static plot to the desktop. Defaults to ‘dash’.

• points (str) – Plot only constraint satisfying points (‘constraint_satisfying’), constraint
violating points (‘constraint_violating’), all points (‘all’), or no points (‘none’).

• height (str) – The height in pixels of the resulting figure. Defaults to ‘auto’, which
matches your screen size.

• width (str) – The width in pixels of the resulting figure. Defaults to ‘auto’, which
matches your screen size.

• font (str) – The font that will be used for axis labels and legends. These values are
automatically inferred from the name fields of your MOOP object. Any specified font
must be available on your computer and available in the appropriate path. Defaults ‘auto’,
which is times new roman on most machines.

• fontsize (str) – The font size (in points). Defaults to ‘auto’, which infers the size based
on the plot dimensions.

• background_color (str) – Set the background color for this plot. Defaults to ‘auto’,
which is white with grey axis lines on most systems.

• screenshot (str) – Set the download mode when saving a screenshot using the “screen-
shot” button. Defaults to ‘svg’. Other available options include: ‘html’, ‘webp’, ‘jpeg’,
‘png’, ‘svg’, ‘eps’, and ‘pdf’. Note that the ‘eps’ option requires the poppler library, which
is not included in any of ParMOO’s dependency lists.

• image_export_format (str) – Set the export format when exporting a plot directly
image file. Defaults to ‘svg’. Other available options include: ‘html’, ‘webp’, ‘jpeg’,
‘png’, ‘svg’, ‘eps’, and ‘pdf’. Note that the ‘eps’ option requires the poppler library, which
is not included in any of ParMOO’s dependency lists.

• data_export_format (str) – Set the format for exporting selected data to a file. De-
faults to ‘csv’. The other option is ‘json’.

• dev_mode (bool) – Run in developer mode, which allows changes to the code to automat-
ically render in the browser. Activating this mode will interfere with some functionalities
(such as checkpointing) since it results in multiple calls to the script. This value defaults
to False, and should only be adjusted by developers.

• pop_up (bool) – Automatically pop-up the dash app when called. Defaults to True. The
only reason one might want to adjust, is if the environment prevents pop-ups or a non
default browser is desired.

• port (str) – The port through which the Dash app is hosted. Defaults to ‘http://127.0.0.1:
8050/’.
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viz.plot.parallel_coordinates(moop, db='pf', output='dash', points='constraint_satisfying', height='auto',
width='auto', font='auto', fontsize='auto', background_color='auto',
screenshot='svg', image_export_format='svg', data_export_format='csv',
dev_mode=False, pop_up=True, port='http://127.0.0.1:8050/')

Create a parallel coordinates plot to visualize the results of a MOOP.

Parameters
• moop (MOOP) – The MOOP results that you would like to visualize.

• db (str) – Either ‘pf’ to plot just the Pareto front, or ‘obj’ to plot the complete objective
database. Defaults to ‘pf’.

• output (str) – Either ‘dash’ to generate an interactive plot running in your browser using
the dash app, or anything else to save a static plot to the desktop. Defaults to ‘dash’.

• points (str) – Plot only constraint satisfying points (‘constraint_satisfying’), constraint
violating points (‘constraint_violating’), all points (‘all’), or no points (‘none’).

• height (str) – The height in pixels of the resulting figure. Defaults to ‘auto’, which
matches your screen size.

• width (str) – The width in pixels of the resulting figure. Defaults to ‘auto’, which
matches your screen size.

• font (str) – The font that will be used for axis labels and legends. These values are
automatically inferred from the name fields of your MOOP object. Any specified font
must be available on your computer and available in the appropriate path. Defaults ‘auto’,
which is times new roman on most machines.

• fontsize (str) – The font size (in points). Defaults to ‘auto’, which infers the size based
on the plot dimensions.

• background_color (str) – Set the background color for this plot. Defaults to ‘auto’,
which is white with grey axis lines on most systems.

• screenshot (str) – Set the download mode when saving a screenshot using the “screen-
shot” button. Defaults to ‘svg’. Other available options include: ‘html’, ‘webp’, ‘jpeg’,
‘png’, ‘svg’, ‘eps’, and ‘pdf’. Note that the ‘eps’ option requires the poppler library, which
is not included in any of ParMOO’s dependency lists.

• image_export_format (str) – Set the export format when exporting a plot directly
image file. Defaults to ‘svg’. Other available options include: ‘html’, ‘webp’, ‘jpeg’,
‘png’, ‘svg’, ‘eps’, and ‘pdf’. Note that the ‘eps’ option requires the poppler library, which
is not included in any of ParMOO’s dependency lists.

• data_export_format (str) – Set the format for exporting selected data to a file. De-
faults to ‘csv’. The other option is ‘json’.

• dev_mode (bool) – Run in developer mode, which allows changes to the code to automat-
ically render in the browser. Activating this mode will interfere with some functionalities
(such as checkpointing) since it results in multiple calls to the script. This value defaults
to False, and should only be adjusted by developers.

• pop_up (bool) – Automatically pop-up the dash app when called. Defaults to True. The
only reason one might want to adjust, is if the environment prevents pop-ups or a non
default browser is desired.

• port (str) – The port through which the Dash app is hosted. Defaults to ‘http://127.0.0.1:
8050/’.
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viz.plot.radar(moop, db='pf', output='dash', points='constraint_satisfying', height='auto', width='auto',
font='auto', fontsize='auto', background_color='auto', screenshot='svg',
image_export_format='svg', data_export_format='csv', dev_mode=False, pop_up=True,
port='http://127.0.0.1:8050/')

Create a radar plot to visualize the results of a MOOP.

Parameters
• moop (MOOP) – The MOOP results that you would like to visualize.

• db (str) – Either ‘pf’ to plot just the Pareto front, or ‘obj’ to plot the complete objective
database. Defaults to ‘pf’.

• output (str) – Either ‘dash’ to generate an interactive plot running in your browser using
the dash app, or anything else to save a static plot to the desktop. Defaults to ‘dash’.

• points (str) – Plot only constraint satisfying points (‘constraint_satisfying’), constraint
violating points (‘constraint_violating’), all points (‘all’), or no points (‘none’).

• height (str) – The height in pixels of the resulting figure. Defaults to ‘auto’, which
matches your screen size.

• width (str) – The width in pixels of the resulting figure. Defaults to ‘auto’, which
matches your screen size.

• font (str) – The font that will be used for axis labels and legends. These values are
automatically inferred from the name fields of your MOOP object. Any specified font
must be available on your computer and available in the appropriate path. Defaults ‘auto’,
which is times new roman on most machines.

• fontsize (str) – The font size (in points). Defaults to ‘auto’, which infers the size based
on the plot dimensions.

• background_color (str) – Set the background color for this plot. Defaults to ‘auto’,
which is white with grey axis lines on most systems.

• screenshot (str) – Set the download mode when saving a screenshot using the “screen-
shot” button. Defaults to ‘svg’. Other available options include: ‘html’, ‘webp’, ‘jpeg’,
‘png’, ‘svg’, ‘eps’, and ‘pdf’. Note that the ‘eps’ option requires the poppler library, which
is not included in any of ParMOO’s dependency lists.

• image_export_format (str) – Set the export format when exporting a plot directly
image file. Defaults to ‘svg’. Other available options include: ‘html’, ‘webp’, ‘jpeg’,
‘png’, ‘svg’, ‘eps’, and ‘pdf’. Note that the ‘eps’ option requires the poppler library, which
is not included in any of ParMOO’s dependency lists.

• data_export_format (str) – Set the format for exporting selected data to a file. De-
faults to ‘csv’. The other option is ‘json’.

• dev_mode (bool) – Run in developer mode, which allows changes to the code to automat-
ically render in the browser. Activating this mode will interfere with some functionalities
(such as checkpointing) since it results in multiple calls to the script. This value defaults
to False, and should only be adjusted by developers.

• pop_up (bool) – Automatically pop-up the dash app when called. Defaults to True. The
only reason one might want to adjust, is if the environment prevents pop-ups or a non
default browser is desired.

• port (str) – The port through which the Dash app is hosted. Defaults to ‘http://127.0.0.1:
8050/’.
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Other Private Classes and Functions

There are several other private submodules, classes, and functions contained in the viz module that are used for creating
and hosting the dashboard. These do not need to be referenced by the user, but are detailed below for developers.

Please note that documentation for some of these functions may be incomplete.

This module contains private methods for hosting and receiving callbacks from an interactiv dashboard. This module
is intended only for developer use.

Note that some docstrings may be incomplete.

class viz.dashboard.Dash_App(moop, plot_type, db, points, height, width, font, fontsize, background_color,
screenshot, image_export_format, data_export_format, dev_mode, pop_up,
port)

A class for hosting the dashboard app.

__init__(moop, plot_type, db, points, height, width, font, fontsize, background_color, screenshot,
image_export_format, data_export_format, dev_mode, pop_up, port)

Constructor for dashboard app.

generate_graph()

Documentation incomplete.

configure()

Documentation incomplete.

update_height()

Documentation incomplete.

update_width()

Documentation incomplete.

update_font()

Documentation incomplete.

update_font_size()

Documentation incomplete.

update_plot_name()

Documentation incomplete.

update_background_color()

Documentation incomplete.

update_plot_type()

Documentation incomplete.

update_database()

Documentation incomplete.

evaluate_height(height_value)
Documentation incomplete.

evaluate_width(width_value)
Documentation incomplete.

evaluate_font(font_value)
Documentation incomplete.
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evaluate_font_size(font_size_value)
Documentation incomplete.

evaluate_background_color(background_color_value)
Documentation incomplete.

evaluate_plot_name(plot_name_value)
Documentation incomplete.

evaluate_plot_type(plot_type_value)
Documentation incomplete.

evaluate_database(database_value)
Documentation incomplete.

evaluate_dataset_download(n_clicks)
Documentation incomplete.

evaluate_selected_data(data, type)
Documentation incomplete.

set_constraint_range(restyleData)
Documentation incomplete.

update_constraint_range(restyleData)
Documentation incomplete.

evaluate_selection_download(n_clicks)
Documentation incomplete.

evaluate_image_export_format(image_export_format_value)
Documentation incomplete.

evaluate_data_export_format(data_export_format_value)
Documentation incomplete.

evaluate_image_download(n_clicks)
Documentation incomplete.

evaluate_customization_options(action, n_clicks)
Documentation incomplete.

evaluate_export_options(action, n_clicks)
Documentation incomplete.

evaluate_constraint_showr(value)
Documentation incomplete.

generate_graph()

Documentation incomplete.

configure()

Documentation incomplete.

update_height()

Documentation incomplete.

2.1. ParMOO API 119



ParMOO User’s Manual, Release 0.3.1

update_width()

Documentation incomplete.

update_font()

Documentation incomplete.

update_font_size()

Documentation incomplete.

update_plot_name()

Documentation incomplete.

update_background_color()

Documentation incomplete.

update_plot_type()

Documentation incomplete.

update_database()

Documentation incomplete.

evaluate_height(height_value)
Documentation incomplete.

evaluate_width(width_value)
Documentation incomplete.

evaluate_font(font_value)
Documentation incomplete.

evaluate_font_size(font_size_value)
Documentation incomplete.

evaluate_background_color(background_color_value)
Documentation incomplete.

evaluate_plot_name(plot_name_value)
Documentation incomplete.

evaluate_plot_type(plot_type_value)
Documentation incomplete.

evaluate_database(database_value)
Documentation incomplete.

evaluate_dataset_download(n_clicks)
Documentation incomplete.

evaluate_selected_data(data, type)
Documentation incomplete.

set_constraint_range(restyleData)
Documentation incomplete.

update_constraint_range(restyleData)
Documentation incomplete.
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evaluate_selection_download(n_clicks)
Documentation incomplete.

evaluate_image_export_format(image_export_format_value)
Documentation incomplete.

evaluate_data_export_format(data_export_format_value)
Documentation incomplete.

evaluate_image_download(n_clicks)
Documentation incomplete.

evaluate_customization_options(action, n_clicks)
Documentation incomplete.

evaluate_export_options(action, n_clicks)
Documentation incomplete.

evaluate_constraint_showr(value)
Documentation incomplete.

This module contains tools to generate interactive Plotly-based graphs.

The functions are:

Display data in interactive browser plot
• generate_scatter(moop) – Generate interactive scatterplot matrix

• generate_parallel(moop) – Generate interactive parallel plot

• generate_radar(moop) – Generate interactive radar plot

viz.graph.generate_scatter(moop, db, points)
Generate a scatterplot or scatterplot matrix.

Parameters
• moop (MOOP) – An object containing the data to be visualized.

• db (string) – Filter traces by dataset. * ‘pf’ - Plot the Pareto Front. * ‘obj’ - Plot objective
data.

• points (string) – Filter traces by constraint score. * ‘constraint_satisfying’ - Show only
points that

satisfy every constraint.

– ’constraint_violating’ - Show only points that violate any constraint.

– ’all’ - Plot all points.

– ’none’ - Plot no points.

Returns
A scatterplot or scatterplot matrix displaying traces that fit the filtering criteria.

Return type
plotly.graph_objects.Figure
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viz.graph.generate_parallel(moop, db, points)
Generate a parallel coordinates plot.

Parameters
• moop (MOOP) – An object containing the data to be visualized.

• db (string) – Filter traces by dataset. * ‘pf’ - Plot the Pareto Front. * ‘obj’ - Plot objective
data.

• points (string) – Filter traces by constraint score. * ‘constraint_satisfying’ - Show only
points that

satisfy every constraint.

– ’constraint_violating’ - Show only points that violate any constraint.

– ’all’ - Plot all points.

– ’none’ - Plot no points.

Returns
A parallel coordinates plot displaying traces that fit the filtering criteria.

Return type
plotly.graph_objects.Figure

viz.graph.generate_radar(moop, db, points)
Generate a radar plot.

Parameters
• moop (MOOP) – An object containing the data to be visualized.

• db (string) – Filter traces by dataset. * ‘pf’ - Plot the Pareto Front. * ‘obj’ - Plot objective
data.

• points (string) – Filter traces by constraint score. * ‘constraint_satisfying’ - Show only
points that

satisfy every constraint.

– ’constraint_violating’ - Show only points that violate any constraint.

– ’all’ - Plot all points.

– ’none’ - Plot no points.

Returns
A radar plot displaying traces that fit the filtering criteria.

Return type
plotly.graph_objects.Figure

This module contains utilities (helper functions) that are used throughout the viz tool.

viz.utilities.export_file(fig, plot_name, file_type)
Export image of figure to working directory.

Parameters
• fig (plotly.graph_objects.Figure) – The figure to export.

• plot_name (string) – Set the filename of the image file.
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• file_type (string) – Set the image file type. - ‘html’ - Export as .html file. - ‘pdf’ -
Export as .pdf file. - ‘svg’ - Export as .svg file. - ‘eps’ - Export as .eps file

if the poppler dependency is installed.

– ’jpeg’ - Export as .jpeg file.

– ’png’ - Export as .png file.

– ’webp’ - Export as .webp file.

viz.utilities.set_plot_name(db)
Provide a default graph title.

Parameters
db (string) – Graph contents inform title. - ‘pf’ - Set plot name to “Pareto Front” - ‘obj’ -
Set plot name to “Objective Data”

Returns
The default plot name.

Return type
plot_name (string)

viz.utilities.set_database(moop, db, points)
Choose which points from MOOP object to plot.

Parameters
• db (string) – Set dataset. - ‘pf’ - Set Pareto Front as dataset. - ‘obj’ - Set objective data

as dataset.

• points (string) – Filter traces from dataset by constraint score. - ‘constraint_satisfying’
- Include only points that

satisfy every constraint.

– ’constraint_violating’ - Include only points that violate any constraint.

– ’all’ - Include all points in dataset.

– ’none’ - Include no points in dataset.

Returns
A 2D dataframe containing post-filter data from the MOOP.

Return type
df (Pandas dataframe)

viz.utilities.set_hover_info(database, i)
Customize information in hover label for trace i.

Parameters
• database (Pandas dataframe) – A 2D dataframe containing the traces to be graphed.

• i (int) – An index indicating the row where the trace we’re labeling is located.

Returns
An HTML-format string to display when users hover over trace i.

Return type
hover_info (string)
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viz.utilities.check_inputs(db, output, points, height, width, font, fontsize, background_color, screenshot,
image_export_format, data_export_format, dev_mode, pop_up, port)

Check keyword inputs to user-facing functions for validity

Parameters
• db – The item passed to the ‘db’ keyword in a user-facing function. If db cannot be cast

to a string valued ‘pf’ or ‘obj’, a ValueError is raised.

• output – The item passed to the ‘output’ keyword in a user-facing function. If output can-
not be cast to a string corresponding to one of the supported output filetypes, a ValueError
is raised.

• points – The item passed to the ‘points’ keyword in a user-facing function. If points can-
not be cast to a string corresponding to one of the supported contraint filters, a ValueError
is raised.

• height – The item passed to the ‘height’ keyword in a user-facing function. If height
is not the default string ‘auto’ or cannot be cast to an int of value greater than one, a
ValueError is raised.

• width – The item passed to the ‘width’ keyword in a user-facing function. If width is not
the default string ‘auto’ or cannot be cast to an int of value greater than one, a ValueError
is raised.

• font – The item passed to the ‘font’ keyword in a user-facing function. If font cannot be
cast to a string, a ValueError is raised.

• fontsize – The item passed to the ‘fontsize’ keyword in a user-facing function. If fontsize
is not the default value ‘auto’ or cannot be cast to an int of value between 1 and 100
inclusive, a ValueError is raised.

• background_color – The item passed to the ‘background_color’ keyword in a user-
facing function. If background_color cannot be cast to a string, a ValueError is raised.

• screenshot – The item passed to the ‘screenshot’ keyword in a user-facing function. If
screenshot cannot be cast to a string corresponding to one of the supported screenshot
filetypes, a ValueError is raised.

• image_export_format – The item passed to the ‘image_export_format’ keyword in a
user-facing function. If image_export_format cannot be cast to a string corresponding to
one of the supported image_export_format filetypes, a ValueError is raised.

• data_export_format – The item passed to the ‘data_export_format’ keyword in a user-
facing function. If data_export_format cannot be cast to a string corresponding to one of
the supported data_export_format filetypes, a ValueError is raised.

• data_export_format – The item passed to the ‘data_export_format’ keyword in a user-
facing function. If data_export_format cannot be cast to a string corresponding to one of
the supported data_export_format filetypes, a ValueError is raised.

• dev_mode – The item passed to the ‘dev_mode’ keyword in a user-facing function. If
dev_mode cannot be cast to one of the boolean values True and False, a ValueError is
raised.

• pop_up – The item passed to the ‘pop_up’ keyword in a user-facing function. If pop_up
cannot be cast to one of the boolean values True and False, a ValueError is raised.

• port – The item passed to the ‘port’ keyword in a user-facing function. If port cannot be
cast to a string beginning with ‘http’, a ValueError is raised.

Raises
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• A ValueError if any of the values passed by a user to a keyword in –

• a user-facing function are judged invalid. –
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Chapter 3
Tutorials

3.1 Basic Tutorials

This is a collection of all tutorials demonstrating basic ParMOO functionality (collected from throughout the ParMOO
User Guide).

3.1.1 Quickstart Demo

This is a basic example (see quickstart.py) of how to build and solve a MOOP with ParMOO, taken from the
Quickstart guide.

import numpy as np
import pandas as pd
from parmoo import MOOP
from parmoo.searches import LatinHypercube
from parmoo.surrogates import GaussRBF
from parmoo.acquisitions import RandomConstraint
from parmoo.optimizers import LocalGPS

# Fix the random seed for reproducibility
np.random.seed(0)

my_moop = MOOP(LocalGPS)

my_moop.addDesign({'name': "x1",
'des_type': "continuous",
'lb': 0.0, 'ub': 1.0})

my_moop.addDesign({'name': "x2", 'des_type': "categorical",
'levels': ["good", "bad"]})

def sim_func(x):
if x["x2"] == "good":
return np.array([(x["x1"] - 0.2) ** 2, (x["x1"] - 0.8) ** 2])

else:
(continues on next page)

126

https://github.com/parmoo/parmoo/blob/main/examples/quickstart.py


ParMOO User’s Manual, Release 0.3.1

(continued from previous page)

return np.array([99.9, 99.9])

my_moop.addSimulation({'name': "MySim",
'm': 2,
'sim_func': sim_func,
'search': LatinHypercube,
'surrogate': GaussRBF,
'hyperparams': {'search_budget': 20}})

def f1(x, s): return s["MySim"][0]
def f2(x, s): return s["MySim"][1]
my_moop.addObjective({'name': "f1", 'obj_func': f1})
my_moop.addObjective({'name': "f2", 'obj_func': f2})

def c1(x, s): return 0.1 - x["x1"]
my_moop.addConstraint({'name': "c1", 'constraint': c1})

for i in range(3):
my_moop.addAcquisition({'acquisition': RandomConstraint,

'hyperparams': {}})

my_moop.solve(5)
results = my_moop.getPF(format="pandas")

# Display solution
print(results)

# Plot results -- must have extra viz dependencies installed
from parmoo.viz import scatter
# The optional arg `output` exports directly to jpg instead of interactive mode
scatter(my_moop, output="jpeg")

The above code saves all (approximate) Pareto optimal solutions in the results dataframe, and prints the results
dataframe to the standard output:

x1 x2 f1 f2 c1
0 0.742840 good 0.294675 0.003267 -0.642840
1 0.726092 good 0.276773 0.005462 -0.626092
2 0.605914 good 0.164766 0.037669 -0.505914
3 0.548931 good 0.121753 0.063036 -0.448931
4 0.543499 good 0.117991 0.065793 -0.443499
5 0.401011 good 0.040405 0.159192 -0.301011
6 0.353552 good 0.023578 0.199316 -0.253552
7 0.328402 good 0.016487 0.222404 -0.228402
8 0.269175 good 0.004785 0.281775 -0.169175
9 0.248183 good 0.002322 0.304502 -0.148183

And produces the following figure of the Pareto points:
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3.1.2 Named Output Types

The following named_var_ex.py code demonstrates ParMOO’s output datatype when the MOOP object is defined using
named variables.

import numpy as np
from parmoo import MOOP
from parmoo.searches import LatinHypercube
from parmoo.surrogates import GaussRBF
from parmoo.acquisitions import UniformWeights
from parmoo.optimizers import LocalGPS

my_moop = MOOP(LocalGPS)

# Define a simulation to use below
def sim_func(x):

if x["MyCat"] == 0:
return np.array([(x["MyDes"]) ** 2, (x["MyDes"] - 1.0) ** 2])

else:
return np.array([99.9, 99.9])

# Add a design variable, simulation, objective, and constraint.
# Note the 'name' keys for each
my_moop.addDesign({'name': "MyDes",

'des_type': "continuous",
'lb': 0.0, 'ub': 1.0})

my_moop.addDesign({'name': "MyCat",
'des_type': "categorical",
'levels': 2})

my_moop.addSimulation({'name': "MySim",
'm': 2,
'sim_func': sim_func,
'search': LatinHypercube,
'surrogate': GaussRBF,
'hyperparams': {'search_budget': 20}})

my_moop.addObjective({'name': "MyObj",
'obj_func': lambda x, s: sum(s["MySim"])})

my_moop.addConstraint({'name': "MyCon",
'constraint': lambda x, s: 0.1 - x["MyDes"]})

# Extract numpy dtypes for all of this MOOP's inputs/outputs
des_dtype = my_moop.getDesignType()
obj_dtype = my_moop.getObjectiveType()
sim_dtype = my_moop.getSimulationType()

# Display the dtypes as strings
print("Design variable type: " + str(des_dtype))
print("Simulation output type: " + str(sim_dtype))
print("Objective type: " + str(obj_dtype))
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The above code produces the following output.

Design variable type: [('MyDes', '<f8'), ('MyCat', '<i4')]
Simulation output type: [('MySim', '<f8', (2,))]
Objective type: [('MyObj', '<f8')]

3.1.3 Unnamed Output Types

The following unnamed_var_ex.py code demonstrates ParMOO’s output datatype when the MOOP object is defined
using unnamed variables.

import numpy as np
from parmoo import MOOP
from parmoo.searches import LatinHypercube
from parmoo.surrogates import GaussRBF
from parmoo.acquisitions import UniformWeights
from parmoo.optimizers import LocalGPS

# Fix the random seed for reproducibility
np.random.seed(0)

my_moop = MOOP(LocalGPS)

# Define a simulation to use below
def sim_func(x):

return np.array([(x[0]) ** 2, (x[0] - 1.0) ** 2])

# Add a design variable, simulation, objective, and constraint, w/o name key
my_moop.addDesign({'des_type': "continuous",

'lb': 0.0, 'ub': 1.0})

my_moop.addSimulation({'m': 2,
'sim_func': sim_func,
'search': LatinHypercube,
'surrogate': GaussRBF,
'hyperparams': {'search_budget': 20}})

my_moop.addObjective({'obj_func': lambda x, s: sum(s)})

my_moop.addConstraint({'constraint': lambda x, s: 0.1 - x[0]})

# Extract numpy dtypes for all of this MOOP's inputs/outputs
des_dtype = my_moop.getDesignType()
sim_dtype = my_moop.getSimulationType()
obj_dtype = my_moop.getObjectiveType()
const_dtype = my_moop.getConstraintType()

# Display the dtypes as strings
print("Design variable type: " + str(des_dtype))
print("Simulation output type: " + str(sim_dtype))
print("Objective type: " + str(obj_dtype))

(continues on next page)
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print("Constraint type: " + str(const_dtype))
print()

# Add one acquisition and solve with 0 iterations to initialize databases
my_moop.addAcquisition({'acquisition': UniformWeights})
my_moop.solve(0)

# Extract final objective and simulation databases
obj_db = my_moop.getObjectiveData()
sim_db = my_moop.getSimulationData()

# Print the objective database dtypes
print("Objective database keys: " + str([key for key in obj_db.keys()]))
for key in obj_db.keys():

print("\t'" + key + "'" + " dtype: " + str(obj_db[key].dtype))
print("\t'" + key + "'" + " shape: " + str(obj_db[key].shape))

print()

# Print the simulation database dtypes
print("Simulation database type: " + str(type(sim_db)))
print("Simulation database length: " + str(len(sim_db)))
for i, dbi in enumerate(sim_db):

print("\tsim_db[" + str(i) + "] database keys: " +
str([key for key in dbi.keys()]))

for key in dbi.keys():
print("\t\t'" + key + "'" + " dtype: " + str(dbi[key].dtype))
print("\t\t'" + key + "'" + " shape: " + str(dbi[key].shape))

The above code produces the following output.

Design variable type: ('<f8', (1,))
Simulation output type: ('<f8', (2,))
Objective type: ('<f8', (1,))
Constraint type: ('<f8', (1,))

Objective database keys: ['x_vals', 'f_vals', 'c_vals']
'x_vals' dtype: float64
'x_vals' shape: (20, 1)
'f_vals' dtype: float64
'f_vals' shape: (20, 1)
'c_vals' dtype: float64
'c_vals' shape: (20, 1)

Simulation database type: <class 'list'>
Simulation database length: 1

sim_db[0] database keys: ['x_vals', 's_vals']
'x_vals' dtype: float64
'x_vals' shape: (20, 1)
's_vals' dtype: float64
's_vals' shape: (20, 2)
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3.1.4 Adding Precomputed Simulation Values

The following precomputed_data.py code demonstrates how to add a precomputed simulation output to ParMOO’s
internal simulation databases.

import numpy as np
from parmoo import MOOP
from parmoo.searches import LatinHypercube
from parmoo.surrogates import GaussRBF
from parmoo.acquisitions import UniformWeights
from parmoo.optimizers import LocalGPS

my_moop = MOOP(LocalGPS)

my_moop.addDesign({'name': "x1",
'des_type': "continuous",
'lb': 0.0, 'ub': 1.0})

my_moop.addDesign({'name': "x2", 'des_type': "categorical",
'levels': 3})

def sim_func(x):
if x["x2"] == 0:
return np.array([(x["x1"] - 0.2) ** 2, (x["x1"] - 0.8) ** 2])

else:
return np.array([99.9, 99.9])

my_moop.addSimulation({'name': "MySim",
'm': 2,
'sim_func': sim_func,
'search': LatinHypercube,
'surrogate': GaussRBF,
'hyperparams': {'search_budget': 20}})

my_moop.addObjective({'name': "f1", 'obj_func': lambda x, s: s["MySim"][0]})
my_moop.addObjective({'name': "f2", 'obj_func': lambda x, s: s["MySim"][1]})

my_moop.addAcquisition({'acquisition': UniformWeights})

# Precompute one simulation value for demo
des_val = np.zeros(1, dtype=[("x1", float), ("x2", int)])[0]
sim_val = sim_func(des_val)

# Add the precomputed simulation value from above
my_moop.update_sim_db(des_val, sim_val, "MySim")

# Get and display initial database
sim_db = my_moop.getSimulationData()
print(sim_db)

The above code produces the following output.

{'MySim': array([(0., 0, [0.04, 0.64])],
dtype=[('x1', '<f8'), ('x2', '<i4'), ('out', '<f8', (2,))])}
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3.1.5 Logging and Checkpointing

When solving a large or expensive problem, logging and checkpointing are recommended. The following code snippet
shows how to solve the same problem from the Quickstart example, but with logging and checkpointing turned on. Then,
another MOOP is created by reloading from the checkpoint file, and run for 1 extra iteration, in order to demonstrate
how to reload from a saved checkpoint file.

Note how the lambda functions from Quickstart example have been explicitly defined below. This is because ParMOO
reloads functions by name, which means that it does not support checkpointing for lambda functions and any named
function must be defined with the same name in the global scope during reloading.

import numpy as np
from parmoo import MOOP
from parmoo.searches import LatinHypercube
from parmoo.surrogates import GaussRBF
from parmoo.acquisitions import UniformWeights
from parmoo.optimizers import LocalGPS
import logging

# Fix the random seed for reproducibility
np.random.seed(0)

# Create a new MOOP
my_moop = MOOP(LocalGPS)

# Add 1 continuous and 1 categorical design variable
my_moop.addDesign({'name': "x1",

'des_type': "continuous",
'lb': 0.0, 'ub': 1.0})

my_moop.addDesign({'name': "x2", 'des_type': "categorical",
'levels': 3})

# Create a simulation function
def sim_func(x):
if x["x2"] == 0:
return np.array([(x["x1"] - 0.2) ** 2, (x["x1"] - 0.8) ** 2])

else:
return np.array([99.9, 99.9])

# Add the simulation function to the MOOP
my_moop.addSimulation({'name': "MySim",

'm': 2,
'sim_func': sim_func,
'search': LatinHypercube,
'surrogate': GaussRBF,
'hyperparams': {'search_budget': 20}})

# Define the 2 objectives as named Python functions
def obj1(x, s): return s["MySim"][0]
def obj2(x, s): return s["MySim"][1]

# Define the constraint as a function
def const(x, s): return 0.1 - x["x1"]

(continues on next page)
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# Add 2 objectives
my_moop.addObjective({'name': "f1", 'obj_func': obj1})
my_moop.addObjective({'name': "f2", 'obj_func': obj2})

# Add 1 constraint
my_moop.addConstraint({'name': "c1", 'constraint': const})

# Add 3 acquisition functions (generates batches of size 3)
for i in range(3):

my_moop.addAcquisition({'acquisition': UniformWeights,
'hyperparams': {}})

# Turn on logging with timestamps
logging.basicConfig(level=logging.INFO,

format='%(asctime)s %(levelname)-8s %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')

# Use checkpointing without saving a separate data file (in "parmoo.moop" file)
my_moop.setCheckpoint(True, checkpoint_data=False, filename="parmoo")

# Solve the problem with 4 iterations
my_moop.solve(4)

# Create a new MOOP object and reload the MOOP from parmoo.moop file
new_moop = MOOP(LocalGPS)
new_moop.load("parmoo")

# Do another iteration
new_moop.solve(5)

# Display the solution
results = new_moop.getPF()
print(results, "\n dtype=" + str(results.dtype))

The above checkpointing.py code produces the following output.

[(0.79013666, 0, 3.48261275e-01, 9.72855201e-05, -0.69013666)
(0.7895263 , 0, 3.47541259e-01, 1.09698380e-04, -0.6895263 )
(0.73488156, 0, 2.86098283e-01, 4.24041125e-03, -0.63488156)
(0.70656124, 0, 2.56604287e-01, 8.73080244e-03, -0.60656124)
(0.68409101, 0, 2.34344111e-01, 1.34348928e-02, -0.58409101)
(0.67237225, 0, 2.23135544e-01, 1.62888423e-02, -0.57237225)
(0.5784217 , 0, 1.43202981e-01, 4.90969442e-02, -0.4784217 )
(0.53031761, 0, 1.09109723e-01, 7.27285920e-02, -0.43031761)
(0.51322778, 0, 9.81116425e-02, 8.22383058e-02, -0.41322778)
(0.49723345, 0, 8.83477213e-02, 9.16675863e-02, -0.39723345)
(0.44987019, 0, 6.24351129e-02, 1.22590882e-01, -0.34987019)
(0.40591372, 0, 4.24004606e-02, 1.55303995e-01, -0.30591372)
(0.39028872, 0, 3.62097978e-02, 1.67863331e-01, -0.29028872)
(0.38995793, 0, 3.60840145e-02, 1.68134501e-01, -0.28995793)
(0.38287784, 0, 3.34443041e-02, 1.73990897e-01, -0.28287784)

(continues on next page)
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(0.25435646, 0, 2.95462529e-03, 2.97726867e-01, -0.15435646)
(0.20137796, 0, 1.89878434e-06, 3.58348342e-01, -0.10137796)]
dtype=[('x1', '<f8'), ('x2', '<i4'), ('f1', '<f8'), ('f2', '<f8'), ('c1', '<f8')]

3.1.6 Solving a MOOP with Derivative-Based Solvers

This example shows how to minimize two conflicting quadratic functions of three variables (named x1, x2, and x3),
under the constraint that an additional categorical variable (x4) must be fixed in class 0 *, using the derivative-based
solver LBFGSB.
* No, this constraint does not really affect the solution; it is just here to demonstrate how constraints/categorical variables
are handled by derivative-based solvers. ParMOO does not use derivative information associated with any categorical
variables, so the derivative w.r.t. x4 can be set to any value, without affecting the outcome.

import numpy as np
from parmoo import MOOP
from parmoo.acquisitions import RandomConstraint, FixedWeights
from parmoo.searches import LatinHypercube
from parmoo.surrogates import GaussRBF
from parmoo.optimizers import LBFGSB

# Fix the random seed for reproducibility
np.random.seed(0)

# Create a new MOOP with a derivative-based solver
my_moop = MOOP(LBFGSB, hyperparams={})

# Add 3 continuous variables named x1, x2, x3
for i in range(3):

my_moop.addDesign({'name': "x" + str(i+1),
'des_type': "continuous",
'lb': 0.0,
'ub': 1.0,
'des_tol': 1.0e-8})

# Add one categorical variable named x4
my_moop.addDesign({'name': "x4",

'des_type': "categorical",
'levels': 3})

def quad_sim(x):
""" A quadratic simulation function with 2 outputs.

Returns:
np.ndarray: simulation value (S) with 2 outputs
* S_1(x) = <x, x>
* S_2(x) = <x-1, x-1>

"""

return np.array([x["x1"] ** 2 + x["x2"] ** 2 + x["x3"] ** 2,
(continues on next page)
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(x["x1"] - 1.0) ** 2 + (x["x2"] - 1.0) ** 2 +
(x["x3"] - 1.0) ** 2])

# Add the quadratic simulation to the problem
# Use a 10 point LH search for ex design and a Gaussian RBF surrogate model
my_moop.addSimulation({'name': "f_conv",

'm': 2,
'sim_func': quad_sim,
'search': LatinHypercube,
'surrogate': GaussRBF,
'hyperparams': {'search_budget': 10}})

def obj_f1(x, sim, der=0):
""" Minimize the first output from 'f_conv' """

if der == 0:
return sim['f_conv'][0]

elif der == 1:
return np.zeros(1, dtype=x.dtype)[0]

elif der == 2:
result = np.zeros(1, dtype=sim.dtype)[0]
result['f_conv'][0] = 1.0
return result

def obj_f2(x, sim, der=0):
""" Minimize the second output from 'f_conv' """

if der == 0:
return sim['f_conv'][1]

elif der == 1:
return np.zeros(1, dtype=x.dtype)[0]

elif der == 2:
result = np.zeros(1, dtype=sim.dtype)[0]
result['f_conv'][1] = 1.0
return result

# Minimize each of the 2 outputs from the quadratic simulation
my_moop.addObjective({'name': "f1",

'obj_func': obj_f1})
my_moop.addObjective({'name': "f2",

'obj_func': obj_f2})

def const_x4(x, sim, der=0):
""" Constrain x["x4"] = 0 """

if der == 0:
return 0.0 if (x["x4"] == 0) else 1.0

elif der == 1:
# No derivatives for categorical design var, just return all zeros
return np.zeros(1, dtype=x.dtype)[0]

elif der == 2:
return np.zeros(1, dtype=sim.dtype)[0]

(continues on next page)
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# Add the single constraint to the problem
my_moop.addConstraint({'name': "c_x4",

'constraint': const_x4})

# Add 2 different acquisition functions to the problem
my_moop.addAcquisition({'acquisition': RandomConstraint})
my_moop.addAcquisition({'acquisition': FixedWeights,

# Fixed weight with equal weight on both objectives
'hyperparams': {'weights': np.array([0.5, 0.5])}})

# Turn on checkpointing -- creates the files parmoo.moop and parmoo.surrogate.1
my_moop.setCheckpoint(True, checkpoint_data=False, filename="parmoo")

# Turn on logging
import logging
logging.basicConfig(level=logging.INFO,

format='%(asctime)s %(levelname)-8s %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')

# Solve the problem
my_moop.solve(5)

# Get and print full simulation database
sim_db = my_moop.getSimulationData(format="pandas")
print("Simulation data:")
for key in sim_db.keys():

print(f"\t{key}:")
print(sim_db[key])

# Get and print results
soln = my_moop.getPF(format="pandas")
print("\n\n")
print("Solution points:")
print(soln)

The above advanced_ex.py code produces the following output.

Simulation data:
f_conv:
x1 x2 x3 x4 out_0 out_1

0 0.164589 0.071519 0.256804 0 0.098153 2.112328
1 0.279173 0.761210 0.446148 2 0.856425 0.883365
2 0.054881 0.143759 0.645615 1 0.440497 1.751987
3 0.761764 0.514335 0.869763 1 1.601312 0.309588
4 0.563992 0.252889 0.383262 1 0.528930 1.128643
5 0.626456 0.302022 0.761693 2 1.063841 0.683499
6 0.835951 0.921038 0.912893 1 2.380498 0.040735
7 0.308713 0.677423 0.189177 0 0.589994 1.239367
8 0.497862 0.843703 0.060276 0 0.963335 1.159652
9 0.967064 0.479916 0.594467 0 1.518922 0.436029
10 0.198616 0.279706 0.253141 0 0.181764 1.718838

(continues on next page)
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11 0.104311 0.713583 0.360565 0 0.650089 1.293170
12 0.990617 0.496152 0.621227 2 1.613413 0.397420
13 0.322478 0.475506 0.173748 1 0.360287 1.416822
14 0.143465 0.160993 0.217433 0 0.093778 2.049997
15 0.317939 0.476173 0.171654 0 0.357290 1.425761
16 0.711117 0.366636 0.640507 0 1.050358 0.613839
17 0.373639 0.410939 0.465101 0 0.524796 1.025438
18 0.193532 0.456200 0.200312 0 0.285698 1.585610
19 0.448389 0.368552 0.567048 0 0.658426 0.890449

Solution points:
x1 x2 x3 x4 f1 f2 c_x4

0 0.967064 0.479916 0.594467 0 1.518922 0.436029 0.0
1 0.711117 0.366636 0.640507 0 1.050358 0.613839 0.0
2 0.448389 0.368552 0.567048 0 0.658426 0.890449 0.0
3 0.373639 0.410939 0.465101 0 0.524796 1.025438 0.0
4 0.317939 0.476173 0.171654 0 0.357290 1.425761 0.0
5 0.193532 0.456200 0.200312 0 0.285698 1.585610 0.0
6 0.198616 0.279706 0.253141 0 0.181764 1.718838 0.0
7 0.143465 0.160993 0.217433 0 0.093778 2.049997 0.0

Note how in the full simulation database several of the design points violate the constraint (x4 != 0). But in the
solution, the constraint is always satisfied.

3.2 libEnsemble Tutorial

The following libe_basic_ex.py code is an example of basic ParMOO + libEnsemble usage from the Extras and
Plugins section of the User Guide.

import numpy as np
from parmoo.extras.libe import libE_MOOP
from parmoo.searches import LatinHypercube
from parmoo.surrogates import GaussRBF
from parmoo.acquisitions import UniformWeights
from parmoo.optimizers import LocalGPS

# When running with MPI, we need to keep track of which thread is the manager
# using libensemble.tools.parse_args()
from libensemble.tools import parse_args
_, is_manager, _, _ = parse_args()

# All functions are defined below.

def sim_func(x):
if x["x2"] == 0:
return np.array([(x["x1"] - 0.2) ** 2, (x["x1"] - 0.8) ** 2])

else:
return np.array([99.9, 99.9])

(continues on next page)
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def obj_f1(x, s):
return s["MySim"][0]

def obj_f2(x, s):
return s["MySim"][1]

def const_c1(x, s):
return 0.1 - x["x1"]

# When using libEnsemble with Python MP, the "solve" command must be enclosed
# in an "if __name__ == '__main__':" block, as shown below
if __name__ == "__main__":

# Fix the random seed for reproducibility
np.random.seed(0)

# Create a libE_MOOP
my_moop = libE_MOOP(LocalGPS)

# Add 2 design variables (one continuous and one categorical)
my_moop.addDesign({'name': "x1",

'des_type': "continuous",
'lb': 0.0, 'ub': 1.0})

my_moop.addDesign({'name': "x2", 'des_type': "categorical",
'levels': 3})

# Add the simulation (note the budget of 20 sim evals during search phase)
my_moop.addSimulation({'name': "MySim",

'm': 2,
'sim_func': sim_func,
'search': LatinHypercube,
'surrogate': GaussRBF,
'hyperparams': {'search_budget': 20}})

# Add the objectives
my_moop.addObjective({'name': "f1", 'obj_func': obj_f1})
my_moop.addObjective({'name': "f2", 'obj_func': obj_f2})

# Add the constraint
my_moop.addConstraint({'name': "c1", 'constraint': const_c1})

# Add 3 acquisition functions
for i in range(3):

my_moop.addAcquisition({'acquisition': UniformWeights,
'hyperparams': {}})

# Turn on checkpointing -- creates files parmoo.moop & parmoo.surrogate.1
my_moop.setCheckpoint(True, checkpoint_data=False, filename="parmoo")

# Use sim_max = 30 to perform just 30 simulations
my_moop.solve(sim_max=30)

(continues on next page)
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# Display the solution -- this "if" clause is needed when running with MPI
if is_manager:

results = my_moop.getPF(format="pandas")
print(results)

You can run the above script with MPI

mpirun -np N python3 libe_basic_ex.py

or with Python’s built-in multiprocessing module.

python3 libe_basic_ex.py --comms local --nworkers N

The resulting output is shown below.

x1 x2 f1 f2 c1
0 0.742825 0 0.294659 0.003269 -0.642825
1 0.680283 0 0.230672 0.014332 -0.580283
2 0.616501 0 0.173473 0.033672 -0.516501
3 0.580369 0 0.144680 0.048238 -0.480369
4 0.555222 0 0.126183 0.059916 -0.455222
5 0.518980 0 0.101749 0.078972 -0.418980
6 0.475477 0 0.075888 0.105315 -0.375477
7 0.302503 0 0.010507 0.247503 -0.202503
8 0.201285 0 0.000002 0.358460 -0.101285
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4.1 Contributing to ParMOO

Contributions of source code, documentations, and fixes are happily accepted via GitHub pull request to

https://github.com/parmoo/parmoo/tree/develop

If you are planning a contribution, reporting bugs, or suggesting features, we encourage you to discuss the concept by
opening a github issue at

https://github.com/parmoo/parmoo/issues

or by emailing parmoo@mcs.anl.gov and interacting with us to ensure that your effort is well-directed.

4.1.1 Contribution Process

ParMOO uses the Gitflow model. Contributors should typically branch from, and make pull requests to, the develop
branch. The main branch is used only for releases. Pull requests may be made from a fork, for those without repository
write access.

Issues can be raised at

https://github.com/parmoo/parmoo/issues

Issues may include reporting bugs or suggested features.

By convention, user branch names should have a <type>/<name> format, where example types are feature, bugfix,
testing, docs, and experimental. Administrators may take a hotfix branch from the main, which will be merged
into main (as a patch) and develop. Administrators may also take a release branch off develop and then merge
this branch into main and develop for a release.

When a branch closes a related issue, the pull request message should include the phrase “Closes #N,” where N is the
issue number.

New features should be accompanied by at least one test case.

All pull requests to develop or main must be reviewed by at least one administrator.
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4.1.2 Developer’s Certificate

ParMOO is distributed under a 3-clause BSD license (see LICENSE). The act of submitting a pull request or patch will
be understood as an affirmation of the following:

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

4.2 Release Process

A release can be undertaken only by a project administrator. A project administrator should have an administrator role
on the ParMOO GitHub, PyPI, and readthedocs pages.

4.2.1 Before release

• A release branch should be taken off develop (or develop pulls controlled).

• Release notes for this version are added to the CHANGELOG.rst file.

• Version number is updated wherever it appears and +dev suffix is removed (in parmoo/version.py, README.
rst, and docs/refs.rst).

• Check README.rst Citing ParMOO and docs/refs.rst for correctness.

• setup.py and parmoo/__init__.py are checked to ensure all information is up to date.

• MANIFEST.in is checked. Locally, try out python setup.py sdist and check created tarball contains correct
files and directories for PyPI package.

• Check that parmoo requirements (in REQUIREMENTS.txt) are compatible with readthedocs.io (in .
readthedocs.yml)
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• Tests are run with source to be released (this may iterate):

– On-line CI (GitHub Actions) tests must pass.

– Documentation must build and display correctly wherever hosted (currently readthedocs.org).

• Pull request from either the develop or release branch to main requesting one or more reviewers (including at
least one other administrator).

• Reviewer will check that all tests have passed and will then approve merge.

4.2.2 During release

An administrator will take the following steps.

• Merge the pull request into main.

• Once CI tests have passed on main:

– A GitHub release will be taken from the main

– A tarball (source distribution) will be uploaded to PyPI (should be done via twine by an admin using
PyPI-API-token authentication)

• If the merge was made from a release branch (instead of develop), merge this branch into develop.

• Create a new commit on develop that appends +dev to the version number (wherever it appears).

4.2.3 After release

• Ensure all relevant GitHub issues are closed.

• Check that the conda-forge package has tracked latest release and update dependency list if needed – an admin
will need to approve the automatically generated PR on https://github.com/conda-forge/parmoo-feedstock

4.3 Release Notes

Below are the release notes for ParMOO.

May reference issues on: https://github.com/parmoo/parmoo/issues

4.3.1 Release 0.3.1

Date
Sep 25, 2023

Bug-fixes and minor restructuring for future releases.

Fixed several serious bugs/limitations:

• Introduced in v0.3.0: when generating batches, a bug was introduced into the lines of code that filter out duplicate
candidates, resulting in significantly decreased performance but no errors being raised

• Allow for ParMOO to still generate target points for the AcqusitionFunction, even when there are no feasible
points in the database

• Increase the number of characters allowed in a name when working with libEnsemble from 10 to 40 characters
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• Broke the MOOP.iterate()method apart into 2 functions (iterate and filterBatch), which makes the code
more maintainable and allows for future improvements to the libE_MOOP parallelism

• Updated deprecated keys in .readthedocs.yml config file

4.3.2 Release 0.3.0

Date
Jul 6, 2023

Significant structural changes for long-term support of future solvers, bug-fixes, and significant improvements to doc-
umentation.

Major Changes:

• surrogates.GaussRBF and surrogates.LocalGaussRBF now calculate model-form uncertainties

• structural changes to MOOP class to support propagation of uncertainty information

• added EI_RandomConstraint acquisition, which can be used to implement Bayesian optimization – note that
for large budgets, this is not currently recommended due to computational expense of numerical integration

• updated LocalGPS to use trust regions, when provided, and perform multiple restarts

• SurrogateOptimizer class now has access to more information about the objective, including raw simulation
outputs, in order to support more diverse structure-exploiting solvers

• Added additional stopping criteria to both MOOP.solve() and libE_MOOP.solve() – all stopping criteria are
now optional (although at least one must be specified) but they are ordered such that calling MOOP.solve(k),
where k is a positional input, will pass to the iter_max criteria and produce the same behavior as before – closes
#18

API Changes:

• In most cases, none. However, it is possible that if users were previously passing arguments to the MOOP.solve()
method explicitly, then the name of the first positional argument has changed: budget -> max_iters

• For users implementing their own searches, surrogates, optimizers, or acquisitions, several classes in
the structs module have been updated to support the present restructuring of the MOOP class

Docs:

• Updated Quickstart guide and README to demonstrate recommended inputs and settings for ParMOO – this
includes no more lambda functions, which closes #50

• Added a FAQ page with additional usage details and responses to frequent questions – the answers in which close
#61

• Added a new tutorial on how to perform high-dimensional multiobjective optimization on a limited budget with
ParMOO

• Changed examples and documentation to use and discuss pandas dataframes, which generally produce more
legible outputs

• Updated libE_MOOP example to demonstrate how to retrieve data in a way that is threadsafe for both Python MP
and MPI usage

Requirements:

• We now require scipy v1.10 or newer, due to usage of qmc integration tools
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• At the time of this release, libEnsemble is using a deprecated version of Pydantic – for this release only we have
fixed the requirement on libEnsemble to v0.9.2, but we will relax this requirement in the future once they have
patched the issue

Bug-fixes:

• Fixed an issue where in rare cases, problems with too many categorical variables could produce unexpected batch
sizes

• Errors in definition of test problems: DTLZ5, 6, and 7 (new implementations have been confirmed against pymoo)

• Fixed an issue which occasionally caused the libE_MOOP class to error out during post-run cleanup when used
with MPI

• Patched an issue with format="pandas" option for MOOP.getSimulationData() class and added a similar
option to all libE_MOOP “getter” functions

Minor changes:

• Fixed typos in docs/doc-strings

• Updated styles to comply with new flake8 recommendations

• New unit tests added

• Added warnings when ParMOO is run with bad budget settings

4.3.3 Release 0.2.2

Date
Apr 25, 2023

Hot-fix for a minor issue in the plotting library without workaround.

• Resolves #58

4.3.4 Release 0.2.1

Date
Apr 10, 2023

Minor performance improvements, maintenance, and restructuring of test cases.

• Both Gaussian RBF surrogates in parmoo/surrogates/gaussian_proc.py now use the current mean of the
response values as the prior instead of the zero function. This greatly improves convergence rates in practice,
especially for our structure-exploiting methods.

• Using an old version of plotly/dash for now because of a dash issue described in plotly/dash#2460

• Added additional tests to check gradient calculations of GaussRBF surrogates.

• Added whitespace to pass new flake8 standards.

• Added year to JOSS publication in several places

• Added “et al.” to our docs configuration file after author names, to credit additional contributors in our docu-
mentation.

4.3. Release Notes 145



ParMOO User’s Manual, Release 0.3.1

4.3.5 Release 0.2.0

Date
Feb 2, 2023

Official release corresponding to accepted JOSS article.

• Added support for a wider variety of design variables (including integer types), as well as support for “custom”
design variables that use user-provided custom embedders/extractors Documentation on design variables has
been expanded accordingly. Although design variables are still specified through dicts not classes, this addresses
and therefore closes the primary issue raised in parmoo/parmoo#28

• Updated extras/libe.py corresponding to interface changes made in libEnsemble Release 0.8.0. This also
addresses the issues on MacOS, referenced in parmoo/parmoo#34

• Added a post-run visualization library and corresponding documentation, closing issue parmoo/parmoo#27

• Allow solvers to start from an initial point that is infeasible, so that problems with relaxable constraints and a
very small feasible set can still be solved

• Various style changes and additional usage environments requested by JOSS reviewers openjournals/joss-
reviews#4468 including parmoo/parmoo#32

• Added support for multistarting optimization solvers when solving surrogate problems. This is particularly im-
portant for the global GaussRBF surrogate

• Fixed an issue in how model improvement points are calculated, as implemented in the surrogate.improve
method for each GaussRBF variation in surrogates/gaussian_proc.py, which was created when adding
support for custom design variables

• The default design tolerance for continuous variables now depends upon the value of ub - lb

Note:

• Dropped support for Python 3.6, due to changes to GitHub Actions documented on actions/setup-python#544

Known issues:

• The visualization library uses advanced plotly/dash features, which may not support the chrome browser, as
described in parmoo/parmoo#37

4.3.6 Release 0.1.0

Date
May 10, 2022

Initial release.

Known issues and desired features will be raised on GitHub post-release.

Known issues:

• update unit tests to use sim/obj/const libraries

• restructure test suite, unit tests are currently not usable as additional documentation

• solve() method(s) should support additional stopping criteria

• allow for maximizing objectives and constraint lower bounds without “hacky” solution (negating values)

• missing functions from DTLZ libraries

• README.md needs a code coverage badge

146 Chapter 4. Developer’s Guide



ParMOO User’s Manual, Release 0.3.1

Desired features:

• update, test, and merge-in MDML interface

• allow user to choose whether or not to use named variables via useNames method, or similar

• add a funcx simulation interface, using libEnsemble release 0.9

• add predicter interface and standalone module

• a GUI interface for creating MOOPs

• static visualization tools for plotting results (from MOOP.getPF() method)

• a visualization dashboard for viewing progress interactively

• design variable types should be a class, with embed/extract methods that can be called by MOOP.__embed__()
and MOOP.__extract__()
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